SPRINGFIELD, NEW JERSEY 07081

 \section*{U.S.A.
 \section*{U.S.A.
 BSW68A NPN switching transistor
 features}- High current (max. 1 A)
- High voltage (max. 150 V).

APPLICATIONS

- General purpose switching and amplification
- Industrial applications.

DESCRIPTION

Fig. 1 Simplified outline (TO-39) and symbol.

PINNING

PIN	DESCRIPTION
1	emitter
2	base
3	collector, connected to case

NPN transistor in a TO-39 metal package.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {cbo }}$	collector-base voltage BSW68A	open emitter	-	150	V
$\mathrm{V}_{\text {CEO }}$	collector-emitter voltage BSW68A	open base	-	150	V
$\mathrm{V}_{\text {EBO }}$	emitter-base voltage	Open coilector	-	6	V
I_{6}	collector current (DC)		-	1	A
ICM	peak collector current	$\mathrm{t}_{\mathrm{p}} \leq 20 \mathrm{~ms}$	-	2	A
I_{BM}	peak base current		-	200	mA
$P_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }} \leq 25^{\circ} \mathrm{C}$	-	800	mW
		$\mathrm{T}_{\text {case }} \leq 25{ }^{\circ} \mathrm{C}$	-	5	W
$\overline{\mathrm{T}_{\text {stg }}}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{1}	junction temperature		-	200	${ }^{\circ} \mathrm{C}$
Tamb	operating ambient temperature		-65	+150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\text {th } j-\mathrm{a}}$	thermal resistance from junction to ambient	free air	220	KW
$\mathrm{R}_{\text {th } j-\mathrm{c}}$	thermal resistance from junction to case		35	KW

CHARACTERISTICS
$\mathrm{T}_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT:
${ }^{\text {c Cbo }}$	collector cut-off current BSW68A	$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=75 \mathrm{~V}$	-	-	100	nA
		$\mathrm{l}_{E}=0 ; \mathrm{V}_{C B}=75 \mathrm{~V} ; \mathrm{T}_{i}=150^{\circ} \mathrm{C}$	-	-	50	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{C B}=150 \mathrm{~V}$	-	-	100	$\mu \mathrm{A}$
Iebo	emitter cut-off current	$\mathrm{t}_{\mathrm{C}}=0 ; \mathrm{V}_{\mathrm{EB}}=3 \mathrm{~V}$	-	-	100	nA
		$\mathrm{C}=0 ; \mathrm{V}_{\mathrm{EG}}=6 \mathrm{~V}$	-	-	100	$\mu \mathrm{A}$
$h_{\text {FE }}$	DC current gain	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \\ & \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ 40 \\ 30 \\ 10 \\ \hline \end{array}$			
$V_{\text {CEsat }}$	collector-emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{l}_{\mathrm{B}}=10 \mathrm{~mA}$	-	-	150	mV
		$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$	-	-	400	mV
		$\mathrm{IC}_{\mathrm{c}}=1 \mathrm{~A}^{\prime} \mathrm{I}_{\mathrm{B}}=150 \mathrm{~mA}$	-	-	1	V
$V_{\text {BEsat }}$	base-emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}$	-	-	900	mV
		$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$	-	-	1.1	V
		$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} ; \mathrm{I}_{\mathrm{B}}=150 \mathrm{~mA}$	-	-	1.4	V
C_{c}	collector capacitance	$\mathrm{I}_{\mathrm{E}}=i_{\text {e }}=0 ; \mathrm{V}_{\text {CE }}=10 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	-	20	pF
$\mathrm{C}_{\text {e }}$	emitter capacitance	$\mathrm{I}_{\mathrm{C}}=\mathrm{i}_{\mathrm{c}}=0 ; \mathrm{V}_{\text {EQ }}=0 ; \mathrm{f}=1 \mathrm{MHz}$	-	-	300	pF
f_{T}	transition frequency	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\text {CE }}=20 \mathrm{~V} ; \mathrm{f}=100 \mathrm{MHz}$	-	130	-	MHz
Switching times (between $\mathbf{1 0 \%}$ and $\mathbf{9 0 \%}$ leveis)						
$\mathrm{t}_{\text {on }}$	turn-on time	$\left\{\begin{array}{l} I_{\text {Con }}=500 \mathrm{~mA} ; I_{\text {Bon }}=50 \mathrm{~mA} ; \\ I_{\text {Boff }}=-50 \mathrm{~mA} \end{array}\right.$	-	500	$-$	ns
tof	turn-off time		-	900	-	ns

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information fumished by N, I Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However N. Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verity that datasheets are current before placing orders.

