
BDW83, BDW83A, BDW83B, BDW83C, BDW83D NPN SILICON POWER DARLINGTONS

- Designed for Complementary Use with BDW84, BDW84A, BDW84B, BDW84C and BDW84D
- 125 W at 25°C Case Temperature

BOURNS®

- 15 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3 V, 6 A

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BDW83		45	
	BDW83A		60	
Collector-base voltage $(I_E = 0)$	BDW83B	V _{CBO}	80	V
	BDW83C		100	
	BDW83D		120	
	BDW83		45	
	BDW83A		60	
Collector-emitter voltage $(I_B = 0)$ (see Note 1)	BDW83B	V _{CEO}	80	V
	BDW83C		100	
	BDW83D		120	
Emitter-base voltage	1	V _{EBO}	5	V
Continuous collector current	Ι _C	15	A	
Continuous base current	I _B	0.5	A	
Continuous device dissipation at (or below) 25°C case temperature (see No	P _{tot}	125	W	
Continuous device dissipation at (or below) 25°C free air temperature (see	P _{tot}	3.5	W	
Unclamped inductive load energy (see Note 4)	½Ll _C ²	100	mJ	
Operating junction temperature range	Тj	-65 to +150	°C	
Operating temperature range	T _{stg}	-65 to +150	°C	
Operating free-air temperature range	T _A	-65 to +150	°C	

NOTES: 1. These values apply when the base-emitter diode is open circuited.

2. Derate linearly to 150°C case temperature at the rate of 1 W/°C.

3. Derate linearly to 150°C free air temperature at the rate of 28 mW/°C.

4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 5 mA, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

PRODUCT INFORMATION

BDW83, BDW83A, BDW83B, BDW83C, BDW83D NPN SILICON POWER DARLINGTONS

PARAMETER		TEST CONDITIONS				MIN	TYP	MAX	UNIT
					BDW83	45			
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 30 mA	I _B = 0		BDW83A	60			
				(see Note 5)	BDW83B	80			V
					BDW83C	100			
					BDW83D	120			
0.50		V _{CE} = 30 V	$I_B = 0$		BDW83			1	
		$V_{CE} = 30 V$	$I_B = 0$		BDW83A			1	
	Collector-emitter	V _{CE} = 40 V	$I_B = 0$		BDW83B			1	mA
	cut-off current	V _{CE} = 50 V	$I_B = 0$		BDW83C			1	
		V _{CE} = 60 V	$I_B = 0$		BDW83D			1	
I _{CBO}	Collector cut-off current	V _{CB} = 45 V	$I_E = 0$		BDW83			0.5	
		V _{CB} = 60 V	$I_E = 0$		BDW83A			0.5	
		V _{CB} = 80 V	$I_E = 0$		BDW83B			0.5	
		V _{CB} = 100 V	$I_E = 0$		BDW83C			0.5	
		V _{CB} = 120 V	$I_E = 0$		BDW83D			0.5	
		V _{CB} = 45 V	$I_E = 0$	T _C = 150°C	BDW83			5	mA
		V _{CB} = 60 V	$I_E = 0$	T _C = 150°C	BDW83A			5	
		V _{CB} = 80 V	$I_E = 0$	T _C = 150°C	BDW83B			5	
		V _{CB} = 100 V	$I_E = 0$	T _C = 150°C	BDW83C			5	
		V _{CB} = 120 V	$I_E = 0$	T _C = 150°C	BDW83D			5	
1	Emitter cut-off	V – EV	L = 0					2	mA
I _{EBO}	current	V _{EB} = 5 V	$I_{\rm C} = 0$					2	ША
h	Forward current	V _{CE} = 3 V	I _C = 6 A	(see Notes 5 and 6)		750		20000	
h _{FE}	transfer ratio	V _{CE} = 3 V	I _C = 15 A			100			
V	Base-emitter	V _{CE} = 3 V	I _C = 6 A	(see Notes 5 and 6)				2.5	V
V _{BE(on)}	voltage	v _{CE} = 3 v	IC = 0 A	(see notes 5 and 6)				2.5	v
V.	Collector-emitter	I _B = 12 mA	I _C = 6 A	(see Notes 5 and 6)				2.5	V
V _{CE(sat)}	saturation voltage	I _B = 150 mA	I _C = 15 A	(see notes 5 and 6)				4	v
V	Parallel diode	I _⊏ = 15 A	I _B = 0					3.5	V
V_{EC}	forward voltage	I _E = 15 A	B = 0					5.5	v

electrical characteristics at 25°C case temperature (unless otherwise noted)

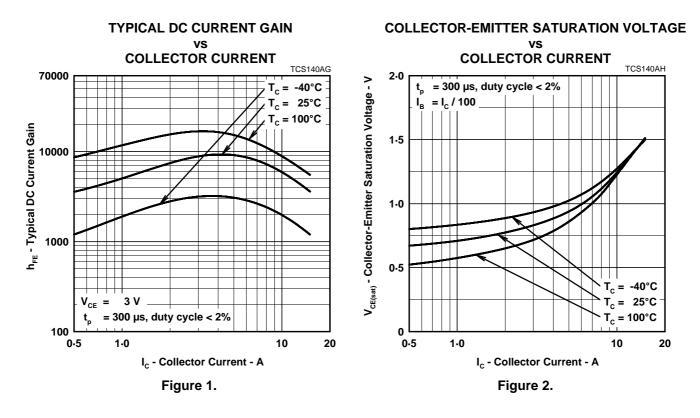
NOTES: 5. These parameters must be measured using pulse techniques, t_p = 300 µs, duty cycle \leq 2%.

6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

thermal characteristics

PARAMETER			ТҮР	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1	°C/W
$R_{ extsf{ heta}JA}$	Junction to free air thermal resistance			35.7	°C/W

resistive-load-switching characteristics at 25°C case temperature

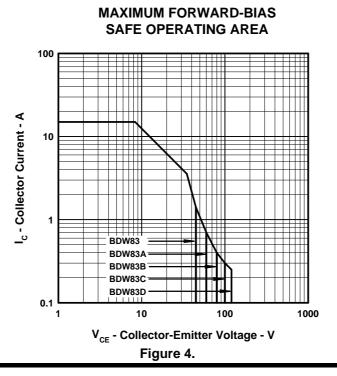

PA	ARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	MAX	UNIT
t _{on} T	urn-on time	I _C = 10 A	$I_{B(on)} = 40 \text{ mA}$	$I_{B(off)} = -40 \text{ mA}$		0.9		μs
t _{off} T	urn-off time	$V_{BE(off)} = -4.2 V$	$R_L = 3 \Omega$	t_p = 20 μ s, dc \leq 2%		7		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

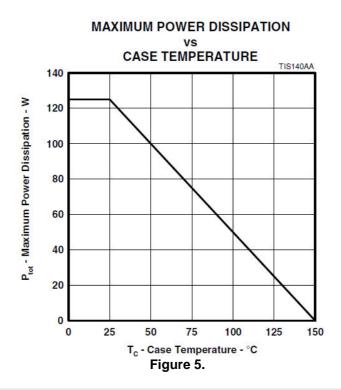
BOURNS®

BDW83, BDW83A, BDW83B, BDW83C, BDW83D NPN SILICON POWER DARLINGTONS

TYPICAL CHARACTERISTICS


BASE-EMITTER SATURATION VOLTAGE vs **COLLECTOR CURRENT** TCS140AI 3.0 $T_c = -40^{\circ}C$ V_{BE(sat)} - Base-Emitter Saturation Voltage - V $T_c = 25^{\circ}C$ 2.5 $T_{c} = 100^{\circ}C$ 2.0 1.5 1.0 0.5 = I_c / 100 I_B = 300 µs, duty cycle < 2% tp 0 0.5 1.0 10 20 I_c - Collector Current - A Figure 3.

PRODUCT INFORMATION

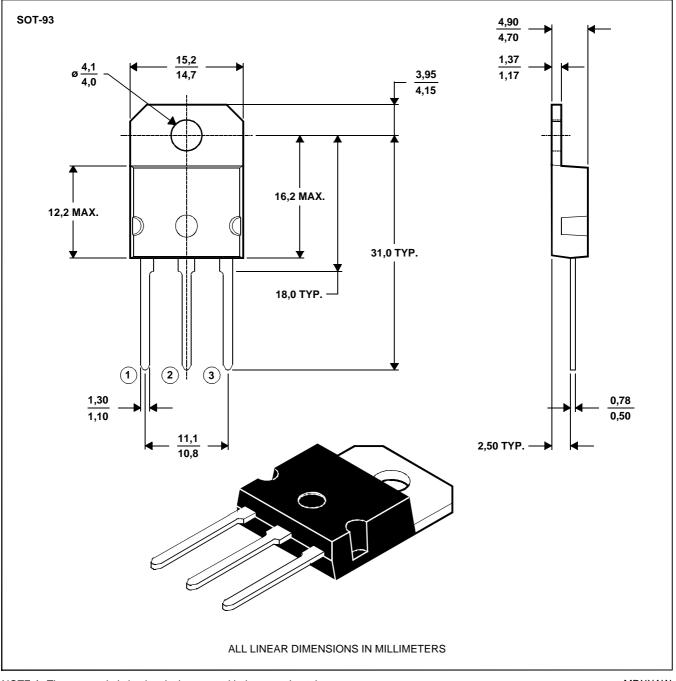

AUGUST 1978 - REVISED JUNE 2011 Specifications are subject to change without notice.

BOURNS®

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

PRODUCT INFORMATION


AUGUST 1978 - REVISED JUNE 2011 Specifications are subject to change without notice.

MECHANICAL DATA

SOT-93

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTE A: The centre pin is in electrical contact with the mounting tab.

MDXXAW

PRODUCT INFORMATION

AUGUST 1978 - REVISED JUNE 2011 Specifications are subject to change without notice.