STATIC RANDOM-ACCESS MEMORIES

- Static Fully Decoded RAM's Organized as 256 Words of One Bit Each
- Schottky-Clamped for High Performance
- Choice of Three-State or Open-Collector Outputs
- Compatible with Most TTL and I²L Circuits
- Chip-Select Input Simplify External Decoding
- Typical Performance:

Read Access Time . . . 42 ns Power dissipation . . . 500 mW

SN74S201, SN74S301 . . . J OR N PACKAGE

description

These 256-bit active-element memories are monolithic transistor-transistor logic (TTL) arrays organized as 256 words of one bit. They are fully decoded and have three chip-select inputs to simplify decoding required to achieve expanded system organizations.

write cycle

The information applied at the data input is written into the selected location when the chip-select inputs and the write-enable input are low. While the write-enable input is low, the 'S201 outputs are in the highimpedance state and the 'S301 outputs are off. When a number of outputs are bus-connected, this highimpedance or off state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up.

read cycle

The stored information (complement of information applied at the data input during the write cycle) is available at the output when the write-enable input is high and the three chip-select inputs is low. When any one of the chip-select inputs are high, the 'S201 outputs will be in the high-impedance state and the 'S301 outputs will be off.

FUNCTION TABLE

FUNCTION	INPUTS		'S201	'\$301 OUTPUT (Q)		
	CHIP SELECT WRITE ENABLE S R/W		OUTPUT (Q)			
Write	L	L	High Impedance	Off		
Read	L	Н	Complement of Data Entered	Complement of Data Entered		
Inhibit	н	X	High Impedance	Off		

 $H \equiv high level, L \equiv low level, X \equiv irrelevant$

For chip-select: L \equiv all $\overline{S}i$ inputs low, H \equiv one or more $\overline{S}i$ inputs high

Copyright © 1979, Texas Instruments Incorporated

INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

5-29

284

logic symbols

schematics of inputs and outputs

RAI

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	1
Input voltage	
Off-State output voltage	,
Operating free-air temperature range	
Storage temperature range	

5

RAMs

recommended operating conditions

		SN74S201		SN74S301			UNIT		
		MIN	NOM	MAX	MiN	NOM	MAX	UNIT	
Supply voltag	ge, V _{CC} (see Note 1)	4.75	5	5.25	4.75	5	5.25	V	
High-level out	tput voltage, V _{OH}						5.5	V	
High-level out	tput current, IOH			- 10.3				mÃ	
Low-level out	tput current, IQL			16			16	mA	
Width of write pulse (write enable low), tw(wr)		65			65		_	ns	
	Address before write pulse, t _{su(ad)}	01			01				
Setup time	Data before end of write pulse, t _{su(da)}	65↑			65↑			ns	
	Chip-select before end of write pulse, t _{SU} (\$)	65↑			65†			1	
	Address after write pulse, th(ad)	01			01				
Hold time	Data after write pulse, th(da)	01			O1			ns	
	Chip-select after write pulse, th(S)	10			01				
Operating fre	e-air temperature, TA	0		70	0		70	°C	

[†] The arrow indicates the transition of the write-enable input used for reference: I for the low-to-high transition, I for the high-to-low transition.

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST COMPUTIONS!		'S201			'S301		
	PARAMETER	TEST CONDITIONS [†]		TYP [‡] MAX		MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage		2			2			>
VIL	Low-level input voltage				0.8			0.8	٧
Vik	Input clamp voltage	$V_{CC} = MIN$, $I_{\parallel} = -18 \text{ mA}$		-	- 1.2			- 1.2	<
∨он	High-level output voltage	V_{CC} - MIN, V_{IH} = 2 V, V_{IL} = 0.8 V, I_{OH} = MAX	2.4						>
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, I _{OL} = 16 mA			0.45			0.45	٧
ЮН	High-level output current	$V_{CC} = MIN, V_{IH} = 2 V, V_{O} = 2.4 V$ $V_{IL} = 0.8 V V_{O} = 5.5 V$						40 100	μΑ
lozh	Off-state output current, high-level voltage applied	$V_{CC} = MAX, V_{IH} = 2 V,$ $V_{IL} = 0.8 V, V_{OH} = 2.4 V$			40				μА
IOZL	Off-state output current, low-level voltage applied	$V_{CC} = MAX$, $V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $V_{OL} = 0.5 V$			-40				μΑ
l _l	Input current at maximum input voltage	$V_{CC} = MAX$, $V_1 = 5.5 V$			1			1	mA
I _{IH} .	High-level input current	$V_{CC} = MAX$, $V_1 = 2.7 V$			25			25	μΑ
TIL.	Low-level input current	V _{CC} - MAX, V _I = 0.5 V			- 250			-250	μΑ
los	Short-circuit output current§	V _{CC} = MAX	- 30		- 100				mA
ICC	Supply current	V _{CC} = MAX, See Note 2		100	140		100	140	mA

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§]Duration of the short circuit should not exceed one second.

NOTE 2: ICC is measured with all chip-select inputs grounded, all other inputs at 4.5 V, and the output open.

'S201 switching characteristics over recommended operating ranges of T_A and V_{CC} (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MiN	TYP [‡]	MAX	UNIT
ta(ad) Access time from address		C ₁ = 30 pF,		42	65	ns	
t _{a(S)}	t _{a(S)} Access time from chip select (select time) t _{SR} Sense recovery time		See Note 3		13	30	ns
tSR					20	40	ns
tPXZ	Disable time from high or low level	From S	C _L = 5 pF,			20	ns
	From R/W		See Note 3		9	20	115

'S301 switching characteristics over recommended operating ranges of T_A and V_{CC} (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP [‡]	MAX	UNIT
ta(ad) Access time from address		C ₁ = 30 pF,		42	65	ns	
ta(S)	ta(S) Access time from chip enable (enable time) tsR Sense recovery time		$R_{l,1} = 300 \Omega_{r}$		13	30	ns
tSR			$R_{12} = 600 \Omega,$		20	40	ns
	Propagation delay time, low-to-high-level	From S	See Nate 3		8	20	ns
^t PLH	output (disable time)	From R/W	See Note 3		15	35	113

 ‡ All typical values are at V_{CC} = 5 V, T_A = 25°.

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

5

RAM

