

February 1994 Revised March 1999

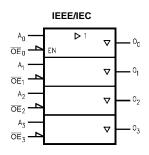
74LVX125

Low Voltage Quad Buffer with 3-STATE Outputs

General Description

The LVX125 contains four independent non-inverting buffers with 3-STATE outputs. The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.

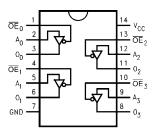
Features


- Input voltage level translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

Ordering Code:

	Order Number	Package Number	Package Description
	74LVX125M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
74LVX125SJ M14D			14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
	74LVX125MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.


Logic Symbol

Pin Descriptions

Pin Names	Description
A _n	Inputs
ŌE _n	Output Enable Inputs
O _n	Outputs

Connection Diagram

Truth Table

Inp	Inputs					
OE _n	A _n	On				
L	L	L				
L	Н	Н				
Н	X	Z				

- H = HIGH Voltage Level
- L = LOW Voltage Level
- Z = High Impedance
- X = Immateria

Absolute Maximum Ratings(Note 1)

Supply Voltage (V $_{CC}$) -0.5V to +7.0V

DC Input Diode Current

 $(I_{|K}) \ V_{I} = -0.5 V \\ \ \ -20 \ \text{mA}$ DC Input Voltage (V_{I}) $-0.5 V \ \text{to } +7.0 V$

DC Output Diode Current (I_{OK})

 $V_{O} = 0.5V$ -20 mA $V_{O} = V_{CC} + 0.5V$ +20 mA

Output Voltage (V_O) \$-0.5V\$ to V_{CC} + 0.5V DC Output Source/Sink Current (I_O) ± 25 mA

DC V_{CC} or Ground Current

 $\begin{array}{ll} (\rm I_{CC} \ or \ I_{GND}) & \pm 50 \ mA \\ \\ Storage \ Temperature \ Range \ (T_{STG}) & -65^{\circ}C \ to +150^{\circ}C \end{array}$

Power Dissipation 180 mW

Recommended Operating Conditions (Note 2)

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}		T _A = 25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Cymbol		(V)	Min	Тур	Max	Min	Max	Onno	00.10		
V _{IH}	HIGH Level	2.0	1.5			1.5					
	Input Voltage	3.0	2.0			2.0		V			
		3.6	2.4			2.4					
V _{IL}	LOW Level	2.0			0.5		0.5				
	Input Voltage	3.0			0.8		0.8	V			
		3.6			0.8		0.8				
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IL}$ or	$I_{OH} = -50 \mu A$	
	Output Voltage	3.0	2.9	3.0		2.9		V	V_{IH}	$I_{OH} = -50 \mu A$	
		3.0	2.58			2.48				$I_{OH} = -4 \text{ mA}$	
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IL}$ or	$I_{OL} = 50 \mu A$	
	Output Voltage	3.0		0.0	0.1		0.1	V	V_{IH}	$I_{OL} = 50 \mu A$	
		3.0			0.36		0.44			$I_{OL} = 4 \text{ mA}$	
l _{OZ}	3-STATE Output	3.6			±0.25		±2.5	μΑ	$V_{IN} = V_{IH}$ or V_{IL}		
	Off-State Current								$V_{OUT} = V_{CC}$ or GND		
I _{IN}	Input Leakage	3.6			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND		
	Current										
I _{CC}	Quiescent Supply	3.6			4.0		40.0	μΑ	$V_{IN} = V_{CC}$ or G	ND	
	Current										

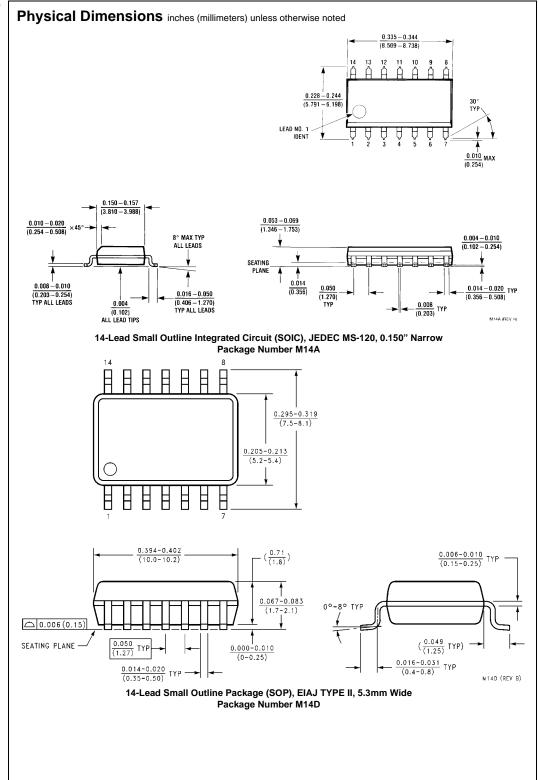
Noise Characteristics (Note 3)

Symbol	Parameter	V _{CC} (V)	T _A = 25°C		Units	C _L (pF)	
Cymbol			Тур	Limit			
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.3	0.8	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.3	-0.8	V	50	
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V_{ILD}	Maximum LOW Level Dynamic Input Voltage			0.8	V	50	

Note 3: Input $t_f = t_f = 3 \text{ ns}$

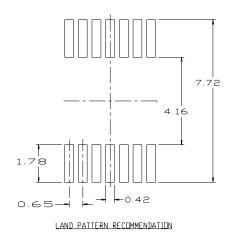
AC Electrical Characteristics

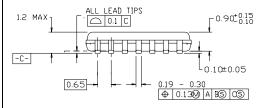
Symbol	Symbol Parameter		T _A = +25°C			T _A = -40°	C to +85°C	Units	Conditions	
Symbol	raiametei	(V)	Min	Тур	Max	Min	Max	Units	Conditions	
t _{PLH}	Propagation Delay Time	2.7		5.8	10.1	1.0	13.5		C _L = 15 pF	
t _{PHL}	Data to Output	ŀ		8.3	13.6	1.0	17.0	ns	C _L = 50 pF	
				4.4	6.2	1.0	8.5	115	C _L = 15 pF	
				6.9	9.7	1.0	12.0		C _L = 50 pF	
t _{PZH}	Output Enable Time	2.7		5.3	9.3	1.0	12.5		$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$	
t _{PZL}				7.8	12.8	1.0	16.0	nc	$C_L = 50 \text{ pF}, R_L = 1 \text{ k}\Omega$	
		3.3 ± 0.3		4.0	5.6	1.0	7.5	115	$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$	
				6.5	9.1	1.0	11.0		$C_L = 50 \text{ pF}, R_L = 1 \text{ k}\Omega$	
t _{PHZ}	Output Disable	2.7		10.0	15.7	1.0	19.0	ns	$C_L = 50 \text{ pF}, R_L = 1 \text{ k}\Omega$	
t _{PLZ}	Time	3.3 ± 0.3		8.3	11.2	1.0	13.0	115	$C_L = 50 \text{ pF}, R_L = 1 \text{ k}\Omega$	
t _{OSHL}	Output to Output	2.7			1.5		1.5	ns	C _L = 50 pF	
t _{OSLH}	Skew (Note 4)	3.3			1.5		1.5	113		

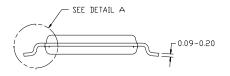

Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$

Capacitance

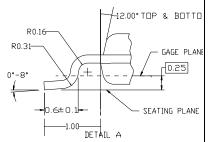
Symbol	Parameter		$T_A = 25^{\circ}C$		T _A = -40°0	Units	
Cymbol	i arameter	Min	Тур	Max	Min	Max	Ointo
C _{IN}	Input Capacitance		4.0	10		10	pF
C _{PD}	Power Dissipation		14				pF
	Capacitance (Note 5)						


Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation: $l_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{lN} + l_{CC}}{4 \text{ (per bit)}}$



Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



NOTES

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB., REF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com