ONE AL COTO

SDLS195 - MARCH 1985 - REVISED MARCH 1988

LOD MUDACKAOE

'LS673

- 16-Bit Serial-In, Serial-Out Shift Register with 16-Bit Parallel-Out Storage Register
- Performs Serial-to-Parallel Conversion

'LS674

- 16-Bit Parallel-In, Serial-Out Shift Register
- Performs Parallel-to-Serial Conversion

description

SN54LS673, SN74LS673

The 'LS673 is a 16-bit shift register and a 16-bit storage register in a single 24-pin package. A three-state input/output (SER/Q15) port to the shift register allows serial entry and/or reading of data. The storage register is connected in a parallel data loop with the shift register and may be asynchronously cleared by taking the store-clear input low. The storage register may be parallel loaded with shift-register data to provide shift-register status via the parallel outputs. The shift register can be parallel loaded with the storage-register data upon command.

A high logic level at the chip-level (\overline{CS}) input disables both the shift-register clock and the storage register clock and places SER/Q15 in the high-impedance state. The store-clear function is not disabled by the chip select.

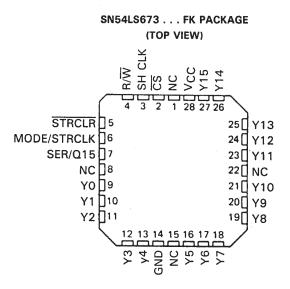
Caution must be exercised to prevent false clocking of either the shift register or the storage register via the chip-select input. The shift clock should be low during the low-to-high transition of chip select and the store clock should be low during the high-to-low transition of chip select.

SN54LS674, SN74LS674

The 'LS674 is a 16-bit parallel-in, serial-out shift register. A three-state input/output (SER/Q15) port provides access for entering a serial data or reading the shift-register word in a recirculating loop.

The device has four basic modes of operation:

- 1) Hold (do nothing)
- 2) Write (serially via input/output)
- 3) Read (serially)
- 4) Load (parallel via data inputs)


Low-to-high-level changes at the chip select input should be made only when the clock input is low to prevent false clocking.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54LS673 J OR W PACKA SN74LS673 DW OR N PACKA	
(TOP VIEW)	

SH CLK [2	23 Y15
R/W [3	22 Y14
STRCLR [_]4	21 Y13
MODE/STRCLK [5	20 Y12
SER/Q15 [6	19 Y11
Y0 [7	18 Y10
Y1 [8	17 🛛 Y9
Y2 [_]9	16 🗌 Y8
Y3 [10	15 🗍 Y7
Y4 [111	14 🗋 Y6
GND [12	13 🗋 Y 5

NC-No internal connection

SDLS195 - MARCH 1985 - REVISED MARCH 1988

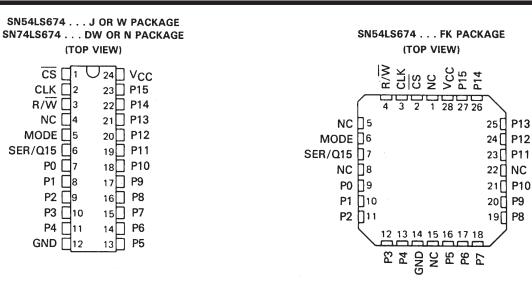
CLK 2

MODE 5

SER/Q15 6

NC 14

P0 7


P1 [8

P2 9

P3 [10

P4 [11

GND [12

'LS673 **FUNCTION TABLE**

	INPUTS SER/						SHIFT REGIS	STORAGE REGISTER			
C S	R/W	SH CLK	STRCLR	MODE/ STRCLK	Q15	SHIFT	READ FROM SERIAL OUTPUT	WRITE INTO SERIAL INPUT	PARALLEL LOAD	FUNC CLEAR	FIONS LOAD
Н	Х	Х	Х	х	Z	NO	NO	NO	NO		NO
Х	Х	Х	L	Х						YES	
L	L	Ļ	Х	Х	Z	YES	NO	YES	NO		
L	н	х	Х	Х	Q15		YES	NÖ			NO
L	н	Ļ	Х	L	Q14n	YES	YES	NO	NO		NO
L	н	Ļ	L	н	L	NO	YES		YES	YES	NO
L	н	Ļ	Н	Н	Y15n	NO	YES		YES	NO	NO
L	L	Х	Н	Ť	Z		NO		NO	NO	YES

'LS674 FUNCTION TABLE

		INPUTS			
CS	R/W	MODE	CLK	Q15	OPERATION
н	х	x	х	Z	Do nothing
L	L	х	4	z	Shift and write (serial load)
L	н	L	ŧ	Q14n	Shift and read
L	н	н	Ļ	P15	Parallel load

H = high level (steady state)

L = low level (steady state)

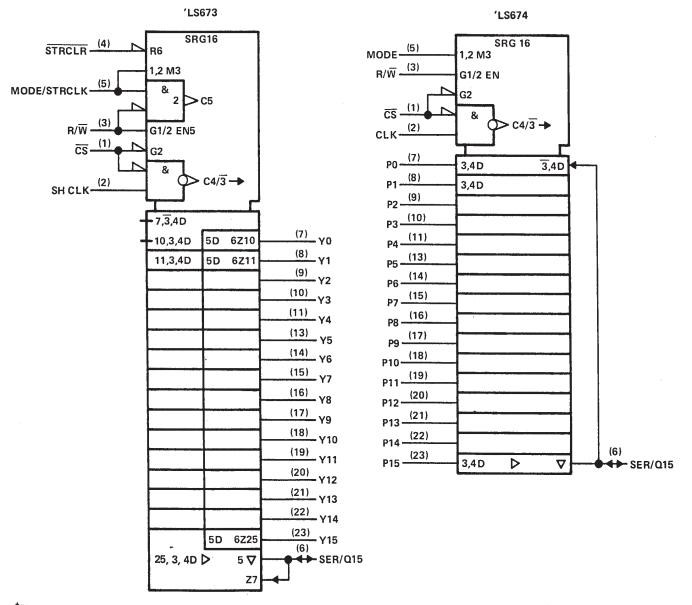
1 = transition from low to high level

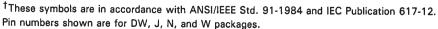
↓ = transition from high to low level

X = irrelevant (any input including transitions)

Z = high impedance, input mode

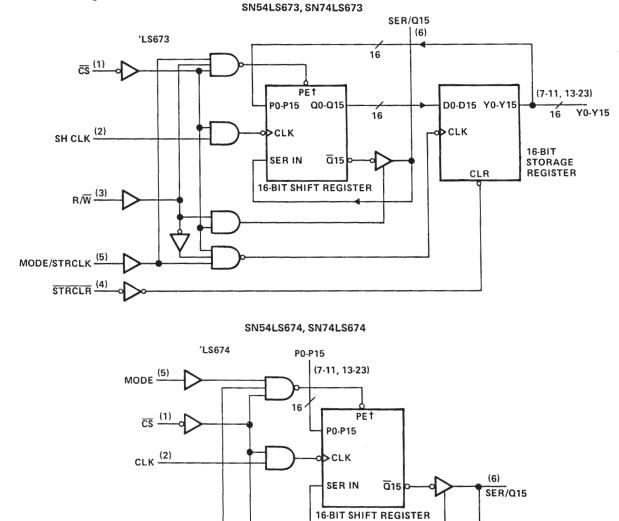
Q14n = content of 14th bit of the shift register before the most recent 4 transition of the clock.


Q15 = present content of 15th bit of the shift register Y15n = content of the 15th bit of the storage register


before the most recent \$ transition of the clock. P15 = level of input P15

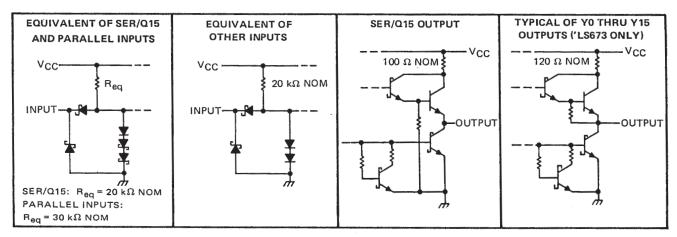
SDLS195 - MARCH 1985 - REVISED MARCH 1988

logic symbols[†]



SDLS195 – MARCH 1985 – REVISED MARCH 1988

functional block diagrams


[†]When PE is active, data is synchronously parallel loaded into the shift registers from the 16 P inputs and no shifting takes place. Pin numbers shown are for DW, J, N, and W packages.

R/W (3)

SDLS195 - MARCH 1985 - REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Input voltage: SER/	Q15		 5.5 V
All ot	hers		
Off-state output voltage	ge		 5.5 V
Operating free-air tem	perature range: SN	54LS673, SN54LS674	 –55°C to 125°C
	` SN	74LS673, SN74LS674	
Storage temperature ra	ange	• • • • • • • • • • • • • • • • • • • •	 –65°C to 150°C

NOTE 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

					SN54LS	*	5	SN74LS'		UNIT
				MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage			4.5	5	5.5	4.75	5	5.25	V
lou	High-level output current	SER/Q15				- 1			-2.6	mA
IOH	nigh-level output current	Y0 thru Y15				-0.4			-0.4	
Lou Low	Low-level output current	SER/Q15				12			24	mA
UL	IOL Low-level output current					4			8	
fclock	Clock frequency					20	0		20	MHz
^t w(clock)	Width of clock input pulse			20			20			ns
^t w(clear)	Width of clear input pulse			20			20			ns
		SER/Q15		20			20			
	Setup time	PO thru P15	20			20				
+		Mode	35			35			ns	
t _{su}	Setup time	R/W, CS	35			35			113	
		SH CLK ↓ to Mode/STR CLK ↑ See Note 2		25			25			1
		SER/Q15		0			0			
.	Hold time	P0 thru P15	'LS673	0			0			ns
th	noid diffe		'LS674	5.0			5.0] ""
		Mode		0			0			1
TA	Operating free-air temperature					125	0		70	°C

NOTE 2: This setup time ensures the storage register will see stable data from the shift register.

SDLS195 – MARCH 1985 – REVISED MARCH 1988

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEGT CON			SN54LS			S'		
	PARAMETER		TEST CON	MIN	түр‡	MAX	MIN	TYP‡	MAX	UNIT	
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
Vik	Input clamp voltage		V _{CC} = MIN,	lj =18 mA			-1.5			-1.5	V
∨он	High-level output voltage	SER/Q15	V _{CC} = MIN,	V _{IH} = 2 V,	2.4	3.2		2.4	3.1		v
Ч		Y0 thru Y15¶	VIL = VILmax,	IOH = MAX	2.5	3.4		2.7	3.4		Ň
VOL Low-level output voltage	SER/Q15	V _{CC} = MIN,	1 _{OL} = 12 mA		0.25	0.4		0.25	0.4		
		$V_{IH} = 2 V$,	IOL = 24 mA					0.35	0.5		
	Y0 thru Y15¶	VIL = VILmax	IOL = 4 mA		0.25	0.4		0.25	0.4	Ì	
			VIE VIEINAX	I _{OL} = 8 mA					0.35	0.5	
IOZH	Off-state output current,	SER/Q15	V _{CC} = MAX,	$V_{IH} = 2 V,$			40			40	μA
-021	high-level voltage applied	0211/210	VIL ≈ VILmax,	V _O = 2.7 V			40				μ.
IOZL	Off-state output current,	SER/Q15	$V_{CC} = MAX,$	VIH = 2 V,		- 0.4			0	0.4	
026	low-level voltage applied	JEN/Q15	VIL = VILmax,	V _O = 0.4 V			- 0.4			- 0.4	mA
lj –	Input current at maximum	SER/Q15	V _{CC} = MAX	V ₁ = 5.5 V			0.1			0.1	
''	input voltage	Others		V = 7 V			0.1			0.1	mA
ЧН	High-level input current	SER/Q15	V _{CC} = MAX,	Vi = 2.7 V			40			40	μA
- 111		Others	· · · · · · · · · · · · · · · · · · ·				20			20	μΑ
ΊL	Low-level input current		V _{CC} = MAX,	VI = 0.4 V			-0.4			-0.4	mA
los	Short-circuit output current§	SER/Q15	V _{CC} = MAX		-30		-130	-30		-130	mA
		Y0 thru Y15¶			-20		-100	-20		-100	
ICC	Supply current	'LS673	V _{CC} = MAX			50	80	L	52	80	mA
		'LS674				25	40		25	40	

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second. I' LS673 only.

switching characteristics, V_{CC} = 5 V, T_A = 25°C, see note 2

PARAMETER	'LS673		'LS	674	TEST CONDITIONS	-	TVD	MAX	1.15.11.77							
FARAMETER	FROM	то	FROM	то	TEST CONDITIONS	MIN	түр	MAX	UNIT							
f _{max}	SHCLK	SER/Q15	CLK	SER/Q15	R _L = 667 Ω, C _L = 45 pF	20	28		MHz							
^t PHL	STRCLR	Y0 thru Y15					25	40								
TPLH	MODE/	Y0 thru Y15			$R_L = 2 k\Omega, C_L = 15 pF$		28	45	ns							
^t PHL	STRCLK	10 111 115					30	45	1							
tPLH	SH CLK SER/Q15	SER/O15	SER/015	SER/Q15	SEB/015	SER/015	SER/015	SEB/015	K SEB/015	CLK	SER/Q15	RL = 667 Ω, CL = 45 pF		21	33	
^t PHL	SHOEK	oen/aro	CER	311/013	n_=007 32, 0L = 45 pr		26	40	ns							
^t PZH	CS, R/W	SER/Q15	CS, R/₩	SER/Q15	R _L = 667 Ω, C _L = 45 pF		30	45	ns							
^t PZL	00,11/1	SEN/QIS	03,11/1	SEN/QT5	NL - 007 32, CL - 45 pr		30	45	1 115							
^t PHZ	ĊŠ, R/₩	SER/Q15	ĊŠ, R/₩	SER/Q15	RL = 667 Ω, CL = 5 pF		25	40	-							
tPLZ	00,11/1	5, H/W 5ER/Q15	03, 11/1	3ER/Q15	11 - 007 32, C[- 5 pF		25	40	ns							

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated