## BCD DECADE/MODULO 16 BINARY SYNCHRONOUS BI-DIRECTIONAL COUNTERS

The SN54/74LS168 and SN54/74LS169 are fully synchronous 4-stage up/down counters featuring a preset capability for programmable operation, carry lookahead for easy cascading and a U/D input to control the direction of counting. The SN54/74LS168 counts in a BCD decade (8, 4, 2, 1) sequence, while the SN54/74LS169 operates in a Modulo 16 binary sequence. All state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the clock.

- Low Power Dissipation 100 mW Typical
- High-Speed Count Frequency 30 MHz Typical
- Fully Synchronous Operation
- Full Carry Lookahead for Easy Cascading
- Single Up/Down Control Input
- Positive Edge-Trigger Operation
- Input Clamp Diodes Limit High-Speed Termination Effects


PIN NAMES

CET Count Enable Trickle (Active LOW) Input
$\mathrm{CP} \quad$ Clock Pulse (Active positive going edge) Input
PE Parallel Enable (Active LOW) Input
U/D Up-Down Count Control Input
$\mathrm{P}_{0}-\mathrm{P}_{3} \quad$ Parallel Data Inputs
$Q_{0}-Q_{3} \quad$ Flip-Flop Outputs
TC
NOTES:
a. 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/ 1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

BCD DECADE/MODULO 16 BINARY SYNCHRONOUS BI-DIRECTIONAL COUNTERS

LOW POWER SCHOTTKY


J SUFFIX
CERAMIC
CASE 620-09


N SUFFIX
PLASTIC CASE 648-08


D SUFFIX
SOIC CASE 751B-03

## ORDERING INFORMATION

| SN54LSXXXJ | Ceramic |
| :--- | :--- |
| SN74LSXXXN | Plastic |
| SN74LSXXXD | SOIC |



STATE DIAGRAMS

SN54/74LS168
UP/DOWN DECADE COUNTER


SN54/74LS168
$\begin{array}{ll}\text { UP: } & T C=Q_{0} \cdot Q_{3} \cdot(\mathrm{U} / \overline{\mathrm{D}}) \\ \text { DOWN: } & T C=\bar{Q}_{0} \cdot \bar{Q}_{1} \cdot \bar{Q}_{2} \cdot \bar{Q}_{3} \cdot(\bar{U} / \mathrm{D})\end{array}$

SN54/74LS169


SN54/74LS169
UP: $\quad \mathrm{TC}=\underline{Q}_{0} \cdot \underline{Q}_{1} \cdot \underline{Q}_{2} \cdot \underline{Q}_{3} \cdot(\underline{(\mathrm{U} / \overline{\mathrm{D}})}$
DOWN: $\quad T C=\bar{Q}_{0} \cdot \bar{Q}_{1} \cdot \bar{Q}_{2} \cdot \bar{Q}_{3} \cdot(\overline{U / D})$

LOGIC DIAGRAMS

SN54/74LS168


LOGIC DIAGRAMS (continued)
SN54/74LS169


GUARANTEED OPERATING RANGES

| Symbol | Parameter |  | Min | Typ | Max | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 54 | 4.5 | 5.0 | 5.5 | V |
|  |  | 74 | 4.75 | 5.0 | 5.25 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating Ambient Temperature Range | 54 | -55 | 25 | 125 | ${ }^{\circ} \mathrm{C}$ |
|  |  | 74 | 0 | 25 | 70 |  |
| IOH | Output Current - High | 54,74 |  |  | -0.4 | mA |
| IOL | Output Current - Low | 54 |  |  | 4.0 | mA |
|  |  | 74 |  |  | 8.0 |  |

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| Symbol | Parameter |  | Limits |  |  | Unit | Test Conditions |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  | 2.0 |  |  | V | Guaranteed In All Inputs | HIGH Voltage for |
| VIL | Input LOW Voltage | 54 |  |  | 0.7 | V | Guaranteed Input LOW Voltage for All Inputs |  |
|  |  | 74 |  |  | 0.8 |  |  |  |
| $\mathrm{V}_{\mathrm{IK}}$ | Input Clamp Diode Voltage |  |  | -0.65 | -1.5 | V | $\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |  |
| VOH | Output HIGH Voltage | 54 | 2.5 | 3.5 |  | V | $\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $V_{\text {IL }}$ per Truth Table |  |
|  |  | 74 | 2.7 | 3.5 |  | V |  |  |
| VOL | Output LOW Voltage | 54, 74 |  | 0.25 | 0.4 | V | $\mathrm{IOL}=4.0 \mathrm{~mA}$ | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\text {IH }} \\ & \text { per Truth Table } \end{aligned}$ |
|  |  | 74 |  | 0.35 | 0.5 | V | $\mathrm{l} \mathrm{OL}=8.0 \mathrm{~mA}$ |  |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH Current Other Inputs CET Input |  |  |  | $\begin{aligned} & 20 \\ & 40 \end{aligned}$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ |  |
|  | Other Input CET Input |  |  |  | $0.1$ | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ |  |
| IIL | Input LOW Current Other Input CET Input |  |  |  | $\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$ | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$ |  |
| Ios | Short Circuit Current (Note 1) |  | -20 |  | -100 | mA | $V_{C C}=$ MAX |  |
| ICC | Power Supply Current |  |  |  | 34 | mA | $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$ |  |

Note 1: Not more than one output should be shorted at one time, nor for more than 1 second.

## FUNCTIONAL DESCRIPTION

The SN54/74LS168 and SN54/74LS169 use edgetriggered D-type flip-flops that have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a set-up time before the rising edge of the clock and remain valid for the recommended hold time thereafter.

The parallel load operation takes precedence over the other operations, as indicated in the Mode Select Table. When PE is LOW, the data on the $\mathrm{P}_{0}-\mathrm{P}_{3}$ inputs enters the flip-flops on the next rising edge of the Clock. In order for counting to occur, both CEP and CET must be LOW and PE must be HIGH. The $U / D$ input then determines the direction of counting.

The Terminal Count (TC) output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the COUNT DOWN mode or reaches 15 (9 for the SN54/74LS168) in the COUNT UP mode. The TC output state is not a function of the Count Enable Parallel (CEP) input level. The TC output of the SN54/74LS168 decade counter can also be LOW in the illegal states 11, 13 and 15, which can occur when power is turned on or via parallel loading. If illegal state occurs, the SN54/74LS168 will return to the legitimate sequence within two counts. Since the TC signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on TC. For this reason the use of TC as a clock signal is not recommended.

MODE SELECT TABLE

| $\overline{\text { PE }}$ | $\mathbf{C E P}$ | $\overline{\mathbf{C E T}}$ | U/D | Action on Rising Clock Edge |
| :---: | :---: | :---: | :---: | :--- |
| L | X | X | X | Load (Pn Qn) |
| H | L | L | H | Count Up (increment) |
| H | L | L | L | Count Down (decrement) |
| H | H | X | X | No Change (Hold) |
| H | X | H | X | No Change (Hold) |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial

AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

| Symbol | Parameter | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Clock Frequency | 25 | 32 |  | MHz | $\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$ |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay, Clock to TC |  | $\begin{aligned} & 23 \\ & 23 \end{aligned}$ | $\begin{aligned} & 35 \\ & 35 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay, Clock to any Q |  | $\begin{aligned} & 13 \\ & 15 \end{aligned}$ | $\begin{aligned} & 20 \\ & 23 \end{aligned}$ | ns |  |
| $\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay, CET to TC |  | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | ns |  |
| tpLH tpHL | Propagation Delay, U/D to TC |  | $\begin{aligned} & \hline 17 \\ & 19 \end{aligned}$ | $\begin{aligned} & 25 \\ & 29 \end{aligned}$ | ns |  |

AC SETUP REQUIREMENTS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

| Symbol | Parameter | Limits |  |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| tW | Clock Pulse Width | 25 |  |  | ns |  |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time, Data or Enable | 20 |  |  | ns |  |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time PE | 25 |  |  | ns | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time U/D | 30 |  |  | ns |  |
| th | Hold Time Any Input | 0 |  |  | ns |  |

AC WAVEFORMS


Figure 1. Clock to Output Delays, Count Frequency, and Clock Pulse Width


Figure 2. Count Enable Trickle Input To Terminal Count Output Delays


Figure 3. Clock to Terminal Delays


The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 5. Setup Time and Hold Time for Count Enable and Parallel Enable Inputs, and Up-Down Control Inputs


Figure 6. Up-Down Input to Terminal Count Output Delays


Case 648-08 N Suffix
16-Pin Plastic


Case 620-09 J Suffix


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. $751 \mathrm{~B}-01$ IS OBSOLETE, NEW STANDARD 751B-03.

|  | MILLIMETERS |  | INCHES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX |  |
| A | 9.80 | 10.00 | 0.386 | 0.393 |  |
| B | 3.80 | 4.00 | 0.150 | 0.157 |  |
| C | 1.35 | 1.75 | 0.054 | 0.068 |  |
| D | 0.35 | 0.49 | 0.014 | 0.019 |  |
| F | 0.40 | 1.25 | 0.016 | 0.049 |  |
| G | 1.27 |  | BSC | 0.050 BSC |  |
| J | 0.19 | 0.25 | 0.008 | 0.009 |  |
| K | 0.10 | 0.25 | 0.004 | 0.009 |  |
| M | $0^{\circ}$ | $7^{\circ}$ | $0^{\circ}$ | $7^{\circ}$ |  |
| P | 5.80 | 6.20 | 0.229 | 0.244 |  |
| R | 0.25 | 0.50 | 0.010 | 0.019 |  |

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. DIMENSION "L" TO CENTER OF LEADS WHEN

FORMED PARALLEL.
DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
6. $648-01$ THRU -07 OBSOLETE, NEW STANDARD $648-01$
648 .

|  | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX |
| A | 18.80 | 19.55 | 0.740 | 0.770 |
| B | 6.35 | 6.85 | 0.250 | 0.270 |
| C | 3.69 | 4.44 | 0.145 | 0.175 |
| D | 0.39 | 0.53 | 0.015 | 0.021 |
| F | 1.02 | 1.77 | 0.040 | 0.070 |
| G | 2.54 BSC | 0.100 BSC |  |  |
| H | 1.27 BS | 0.000 BSC |  |  |
| J | 0.21 | 0.38 | 0.008 | 0.015 |
| K | 2.80 | 3.30 | 0.110 | 0.130 |
| L | 7.50 | 7.74 | 0.295 | 0.305 |
| M | $0^{\circ}$ | $10^{\circ}$ | $0^{\circ}$ | $10^{\circ}$ |
| S | 0.51 | 1.01 | 0.020 | 0.040 |

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982 .
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL
4. DIM F MAY NARROW TO 0.76 ( 0.030 ) WHERE THE LEAD ENTERS THE CERAMIC BODY.
5. $620-01$ THRU -08 OBSOLETE, NEW STANDARD 620-09.

| DIM | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | 19.05 | 19.55 | 0.750 | 0.770 |
| B | 6.10 | 7.36 | 0.240 | 0.290 |
| C | - | 4.19 | - | 0.165 |
| D | 0.39 | 0.53 | 0.015 | 0.021 |
| E | 1.27 BSC |  | 0.050 BSC |  |
| F | 1.40 | 1.77 | 0.055 | 0.070 |
| G | 2.54 BSC |  | 0.100 BSC |  |
| J | 0.23 | 0.27 | 0.009 | 0.011 |
| K | - | 5.08 | - | 0.200 |
| L | 7.62 BSC |  | 0.300 BSC |  |
| M | $0^{\circ}$ | $15^{\circ}$ | $0^{\circ}$ | $15^{\circ}$ |
| N | 0.39 | 0.88 | 0.015 | 0.035 |

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and ' $\boldsymbol{\mu}$, are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

## Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

