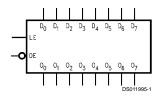
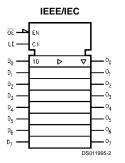
May 1997

🚫 National Semiconductor

74LCX373 Low-Voltage Octal Transparent Latch with 5V Tolerant Inputs and Outputs

General Description


The LCX373 consists of eight latches with TRI-STATE® outputs for bus organized system applications. The device is designed for low voltage (3.3V) $V_{\rm CC}$ applications with capability of interfacing to a 5V signal environment.

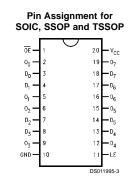

The LCX373 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 8.0 ns t_{PD} max, 10 µA I_{CCQ} max
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal
- 2.0V-3.6V V_{CC} supply operation
- ±24 mA output drive
- Implements patented Quiet Series[™] noise/EMI reduction circuitry
- Functionally compatible with the 74 series 373
- Latch-up performance exceeds 500 mA
- ESD performance:
- Human Body Model > 2000V
- Machine Model > 200V

Logic Symbols

	SOIC JEDEC	SOIC EIAJ	SSOP Type II	TSSOP JEDEC
Order Number	74LCX373WM	74LCX373SJ	74LCX373MSA	74LCX373MTC
	74LCX373WMX	74LCX373SJX	74LCX373MSAX	74LCX373MTCX
See NS Package Number	M20B	M20D	MSA20	MTC20


TRI-STATE[®] is a registered trademark of National Semiconductor Corporation. Quiet Series[™] is a trademark of National Semiconductor Corporation.

www.national.com

74LCX373 Low-Voltage Octal Transparent Latch with 5V Tolerant Inputs and Outputs

© 1997 National Semiconductor Corporation DS011995

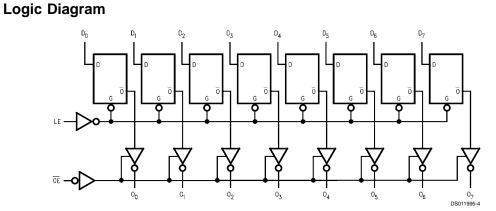
Connection Diagram

Pin	Description		
Names			
D ₀ -D ₇	Data Inputs		
LE	Latch Enable Input		
OE	Output Enable Input		
0 ₀ -0 ₇	TRI-STATE Latch		
	Outputs		

Functional Description

The LCX373 contains eight D-type latches with TRI-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table


	Inputs		
LE	ŌE	D _n	On
Х	Н	Х	Z
н	L	L	L
н	L	н	н
L	L	Х	Oo

H = HIGH Voltage Level L = LOW Voltage Level

Z = High Impedance

X = Immaterial

O₀ = Previous O₀ before HIGH to LOW transition of Latch Enable

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

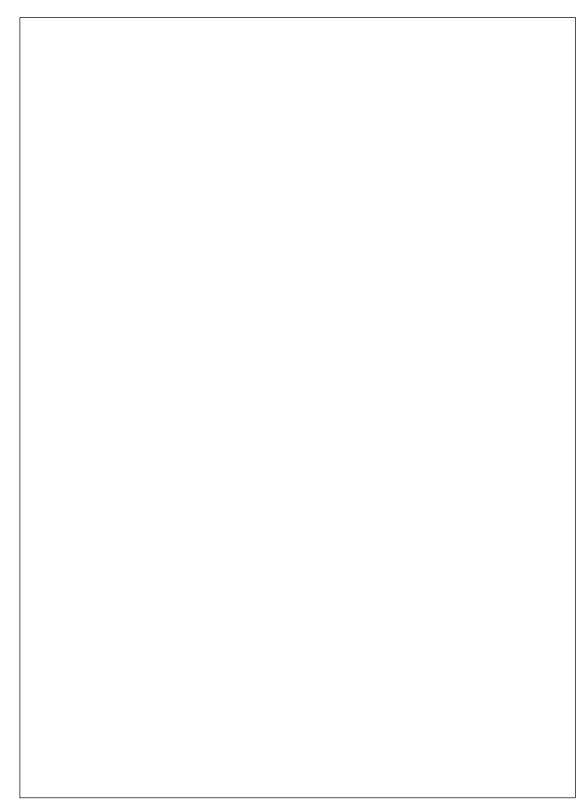
Symbol	Parameter	Value	Conditions	Units
V _{cc}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in TRI-STATE	V
		-0.5 to V _{CC} + 0.5	Output in High or Low State (Note 2)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
Ι _{οκ}	DC Output Diode Current	-50	V _o < GND	mA
		+50	$V_{\rm o} > V_{\rm cc}$	
I _O	DC Output Source/Sink Current	±50		mA
I _{cc}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

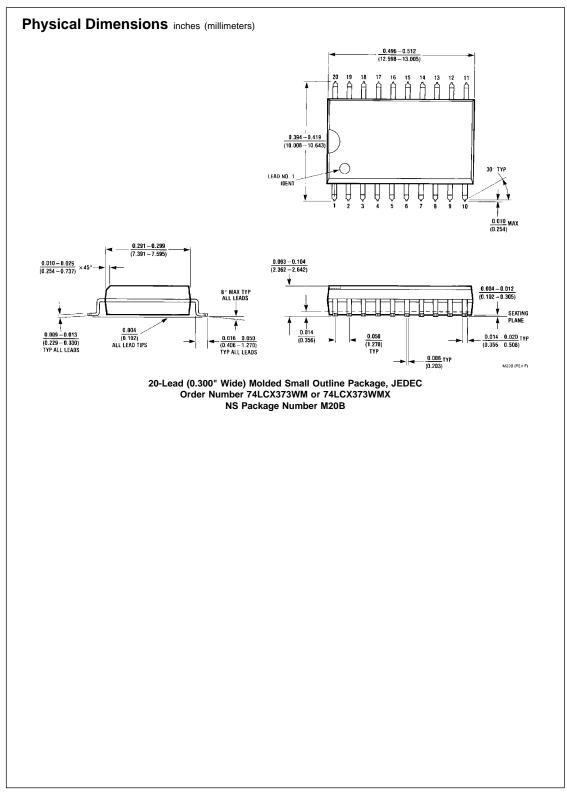
Recommended Operating Conditions

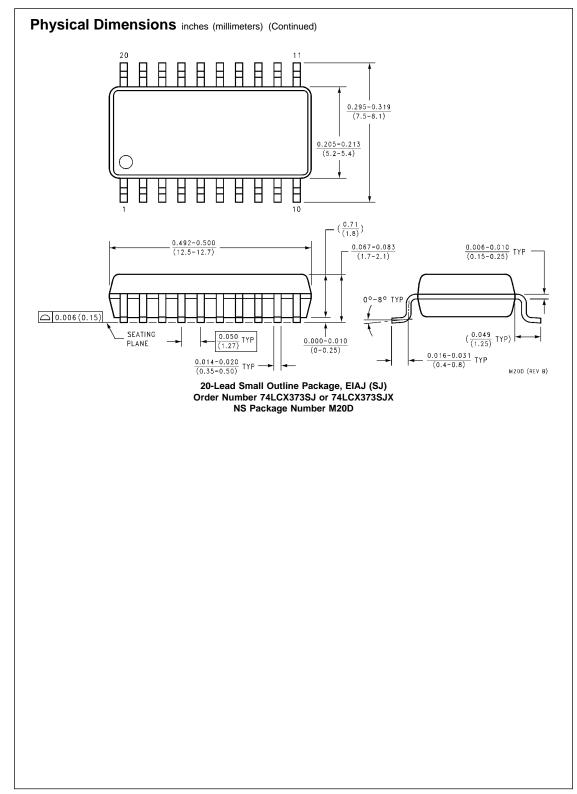
Symbol	Parame	Min	Max	Units	
V _{cc}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{cc}	V
		TRI-STATE	0	5.5	
I _{OH} /I _{OL}	Output Current	V _{CC} = 3.0V-3.6V		±24	mA
		$V_{CC} = 2.7 V$		±12	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V-2.0V,	$V_{CC} = 3.0V$	0	10	ns/V

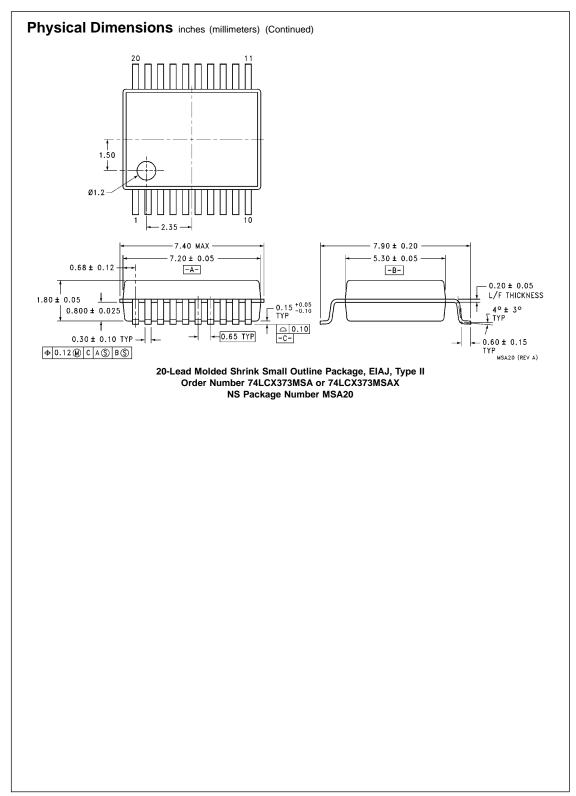
Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

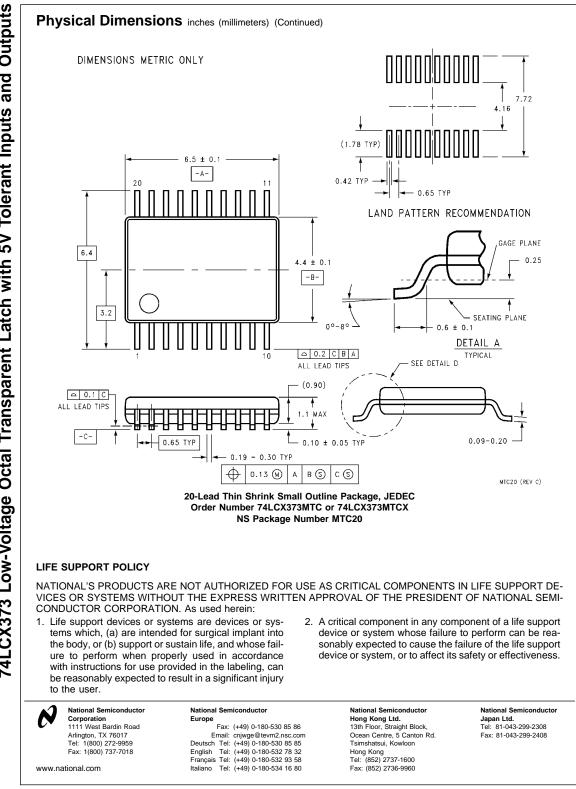
Note 2: I_O Absolute Maximum Rating must be observed.


Symbol	Parameter	Conditions	V _{cc}	$T_{A} = -40^{\circ}$	C to +85°C	Units
			(V)	Min	Max	
V _{IH}	HIGH Level Input Voltage		2.7–3.6	2.0		V
VIL	LOW Level Input Voltage		2.7–3.6		0.8	V
V _{он}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7–3.6	V _{CC} – 0.2		V
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		V
		I _{OH} = -24 mA	3.0	2.2		V
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7–3.6		0.2	V
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	V
		I _{OL} = 24 mA	3.0		0.55	V
I _I	Input Leakage Current	$0 \le V_I \le 5.5V$	2.7-3.6		±5.0	μA
I _{oz}	TRI-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.7–3.6		±5.0	μA
		$V_{I} = V_{IH} \text{ or } V_{IL}$				
I _{OFF}	Power-Off Leakage Current	$V_{I} \text{ or } V_{O} = 5.5 V$	0		10	μA
I _{cc}	Quiescent Supply Current	$V_1 = V_{CC}$ or GND	2.7-3.6		10	μA
		$3.6V \le V_I, V_O \le 5.5V$	2.7-3.6		±10	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6		500	μA


AC Electrical Characteristics


Symbol	Parameter	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				
		$V_{\rm CC} = 3.3V \pm 0.3V$		V _{CC} = 2.7V		1
		Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	8.0	1.5	9.0	ns
t _{PLH}	D _n to O _n	1.5	8.0	1.5	9.0	
t _{PHL}	Propagation Delay	1.5	8.5	1.5	9.5	ns
t _{PLH}	LE to O _n	1.5	8.5	1.5	9.5	
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	ns
t _{PZH}		1.5	8.5	1.5	9.5	
t _{PLZ}	Output Disable Time	1.5	7.5	1.5	8.5	ns
t _{PHZ}		1.5	7.5	1.5	8.5	
t _s	Setup Time, D _n to LE	2.5		2.5		ns
t _H	Hold Time, D _n to LE	1.5		1.5		ns
t _w	LE Pulse Width	3.3		3.3		ns
t _{OSHL}	Output to Output Skew		1.0			ns
t _{OSLH}	(Note 3)		1.0			


Note 3: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}).


ymbol	Parameter	Conditions	V _{cc} (V)	T _A = 25°C Typical	Unit
OLP	Quiet Output Dynamic Peak V _{OL}	C _L = 50 pF, V _{IH} = 3.3V, V _{IL} = 0V	3.3	0.8	V
	Quiet Output Dynamic Valley V _{OI}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
Capa	citance				
Symbol	Parameter	Conditions		Typical	Units
2 _{IN}	Input Capacitance	V_{CC} = Open, V_{I} = 0V or V_{CC}		7	pF
ООТ	Output Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V_{CC}		8	pF
PD	Power Dissipation Capacitance	$V_{\rm CC}$ = 3.3V, $V_{\rm I}$ = 0V or $V_{\rm CC}$, F = 10	MHz	25	pF
	Temperature Range Family 74LCX = Commercial Device Type Package Code WM = (0.300" Wide) Molded Sma SJ = Small Outline Package, EIA MTC = Thin Shrink Small Outline 4.4 mm Body Width	۲J	"X" =	Variations = Tape and Reel = Rail/Tube	
	MSA = Molded Shrink Small Outlin			DS011995-5	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications