
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT643

FEATURES

- Octal bidirectional bus interface
- True and inverting 3-state outputs
- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT643 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT643 are octal transceivers featuring true and inverting 3-state bus compatible outputs in both send and receive directions.

The "643" features an output enable ($\overline{\text{OE}}$) input for easy cascading and a send/receive (DIR) for direction control. $\overline{\text{OE}}$ controls the outputs so that the buses are effectively isolated.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYI	UNIT		
STNBUL		CONDITIONS	НС	НСТ	UNIT	
t _{PHL} / t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V				
	A _n to B _n ; inverting		7	8	ns	
	B _n to A _n ; true		8	11	ns	
CI	input capacitance		3.5	3.5	pF	
C _{I/O}	input/output capacitance		10	10	pF	
C _{PD}	power dissipation capacitance per transceiver	notes 1 and 2	42	44	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

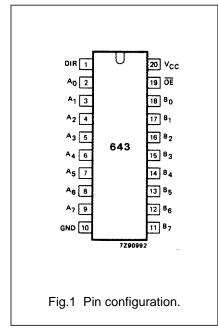
 f_i = input frequency in MHz

 $f_o = output frequency in MHz$

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

 C_L = output load capacitance in pF

 V_{CC} = supply voltage in V


2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to V_{CC} -1.5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	DIR	direction control
2, 3, 4, 5, 6, 7, 8, 9	A ₀ to A ₇	data inputs/outputs
10	GND	ground (0 V)
18, 17, 16, 15, 14, 13, 12, 11	B ₀ to B ₇	data inputs/outputs
19	OE	output enable input (active LOW)
20	V _{CC}	positive supply voltage

G3 3EN 1

2 1

<u>3</u> F

<u>4 F</u>

5 f

6

7 T

8 1

<u>9 </u>

3EN2

2 7 18

Fig.3 IEC logic symbol.

17

16

15

114

+ 13

+12

7290994.1

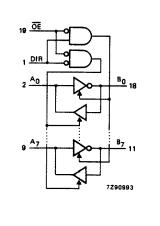
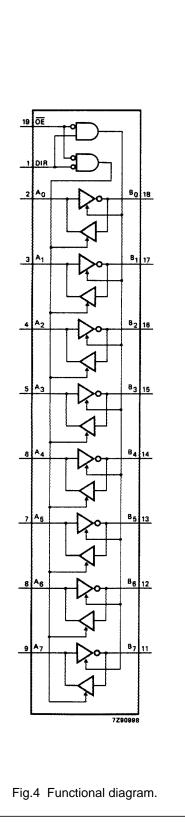


Fig.2 Logic symbol.

FUNCTION TABLE

INPUTS **INPUTS/OUTPUTS** OE DIR An Bn L A = Binputs L Н inputs $B = \overline{A}$ L Н Ζ Ζ Х


Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF-state

74HC/HCT643

74HC/HCT643

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HC									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,,	
t _{PHL} / t _{PLH}	propagation delay A_n to B_n ; inverting		25 9 7	90 18 15		115 23 20		135 27 23	ns	2.0 4.5 6.0	Fig.5
t _{PHL} / t _{PLH}	propagation delay B _n to A _n ; non-inverting (true)		28 10 8	90 18 15		115 23 20		135 27 23	ns	2.0 4.5 6.0	Fig.6
t _{PZH} / t _{PZL}	$\begin{array}{l} 3\text{-state output enable time} \\ \overline{OE}, \text{ DIR to } A_n; \\ \overline{OE}, \text{ DIR to } B_n \end{array}$		39 14 11	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{PHZ} / t _{PLZ}	$\begin{array}{l} \mbox{3-state output disable time} \\ \hline \overline{OE}, \mbox{ DIR to } A_n; \\ \hline \overline{OE}, \mbox{ DIR to } B_n \end{array}$		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.5 and Fig.6

74HC/HCT643

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

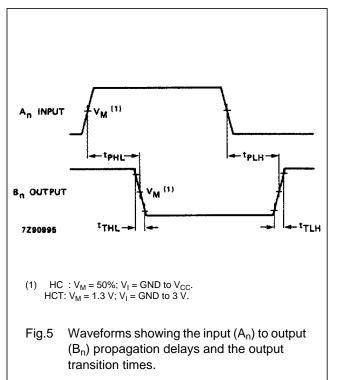
Output capability: bus driver I_{CC} category: MSI

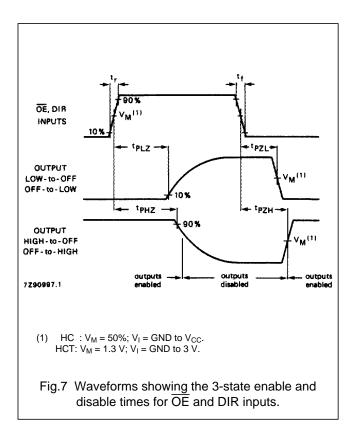
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT					
A _n	1.50					
B _n	0.40					
OE	1.50					
DIR	0.90					

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
	PARAMETER	74HCT									
		+25			-40 to +85		-40 to +125			V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay A _n to B _n ; inverting		10	20		25		30	ns	4.5	Fig.5
t _{PHL} / t _{PLH}	propagation delay B _n to A _n ; non-inverting (true)		13	23		29		35	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	$\begin{array}{l} \mbox{3-state output enable time} \\ \hline \overline{OE}, \mbox{ DIR to } A_n; \\ \hline \overline{OE}, \mbox{ DIR to } B_n \end{array}$		16	30		38		45	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	$\begin{array}{l} \mbox{3-state output disable time} \\ \hline \overline{OE}, \mbox{ DIR to } A_n; \\ \hline \overline{OE}, \mbox{ DIR to } B_n \end{array}$		17	30		38		45	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.5 and Fig.6

Product specification

74HC/HCT643

AC WAVEFORMS

B_n INPUT V_M ⁽¹⁾ A_n OUTPUT V_M ⁽¹⁾ TZ90996 (1) HC : V_M = 50%; V_I = GND to V_{CC}. HCT: V_M = 1.3 V; V_I = GND to 3 V. Fig.6 Waveforms showing the input (B_n) to output (A_n) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".