

54F/74F825 8-Bit D-Type Flip-Flop

General Description

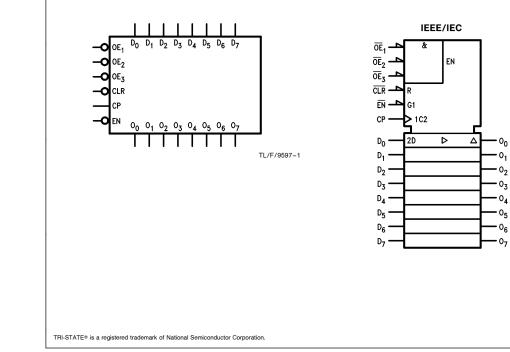
The 'F825 is an 8-bit buffered register. It has Clock Enable and Clear features which are ideal for parity bus interfacing in high performance microprogramming systems. Also included in the 'F825 are multiple enables that allow multiuser control of the interface.

The 'F825 is functionally and pin compatible with AMD's Am29825.

Commercial	Military	Package Number	Package Description
74F825SPC		N24C	24-Lead (0.300" Wide) Molded Dual-In-Line
	54F825SDM (Note 2)	J24F	24-Lead (0.300" Wide) Ceramic Dual-In-Line
74F825SC (Note 1)		M24B	24-Lead (0.300" Wide) Molded Small Outline, JEDEC
	54F825FM (Note 2)	W24C	24-Lead Cerpack
	54F825LM (Note 2)	E28A	24-Lead Ceramic Leadless Chip Carrier, Type C

Features ■ TRI-STATE® output

Clock enable and clear

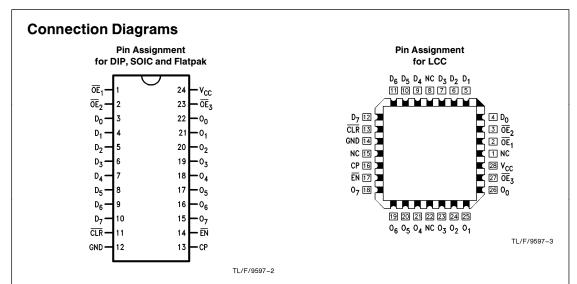

Multiple output enables

■ Direct replacement for AMD's Am24825

Note 1: Devices also available in 13'' reel. Use suffix = SCX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = SDMQB, FMQB and LMQB.

Logic Symbols


© 1995 National Semiconductor Corporation TL/F/9597

RRD-B30M75/Printed in U. S. A.

TL/F/9597-4

54F/74F825 8-Bit D-Type Flip-Flop

December 1994

Unit Loading/Fan Out

		54F/74F				
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}			
D ₀ -D ₇	Data Inputs	1.0/1.0	20 µA/−0.6 mA			
O ₀ -O ₇	TRI-STATE Data Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)			
$\overline{OE}_1, \overline{OE}_2, \overline{OE}_3$	Output Enable Input	1.0/1.0	20 µA/−0.6 mA			
EN	Clock Enable	1.0/1.0	20 µA/−0.6 mA			
CLR	Clear	1.0/1.0	20 µA/−0.6 mA			
CP	Clock Input	1.0/2.0	20 µA/-1.2 mA			

Functional Description

The 'F825 consists of eight D-type edge-triggered flip-flops. This device has TRI-STATE true outputs and is organized in broadside pinning. In addition to the clock and output en-able pins, the buffered clock (CP) and buffered Output Enable ($\overline{\text{OE}}$) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH CP transition. With the \overline{OE} LOW the contents of the flip-flops are available at the outputs. When the $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\text{OE}}$


input does not affect the state of the flip-flops. The 'F825 has Clear (CLR) and Clock Enable (EN) pins.

When the $\overline{\text{CLR}}$ is LOW and the $\overline{\text{OE}}$ is LOW the outputs are LOW. When CLR is HIGH, data can be entered into the flipflops. When EN is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When the EN is HIGH the outputs do not change state, regardless of the data or clock input transitions.

Function Table									
	Inputs			Internal	Output	Function			
ŌĒ	CLR	EN	СР	D	Q	0	. unouon		
н	н	L	н	х	NC	Z	Hold		
Н	н	L	L	Х	NC	Z	Hold		
Н	Н	Н	Х	Х	NC	Z	Hold		
L	Н	Н	Х	Х	NC	NC	Hold		
Н	L	Х	Х	Х	Н	Z	Clear		
L	L	Х	Х	Х	Н	L	Clear		
Н	н	L		L	н	Z	Load		
Н	н	L		н	L	Z	Load		
L	Н	L		L	Н	L	Data Available		
L	Н	L		н	L	н	Data Available		
L	н	L	н	Х	NC	NC	No Change in Data		
L	Н	L	L	Х	NC	NC	No Change in Data		

Z = High Impedance $\checkmark =$ LOW-to-HIGH Transition

NC = No Change

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
Plastic	-55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to $+7.0V$
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE Output	-0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twic

twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

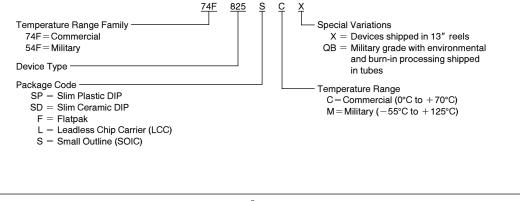
Recommended Operating Conditions

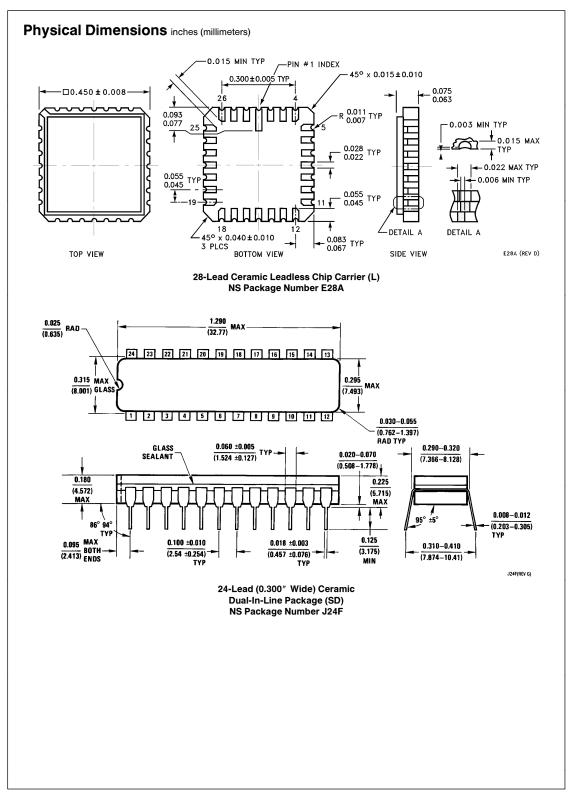
Free Air Ambient Temperature

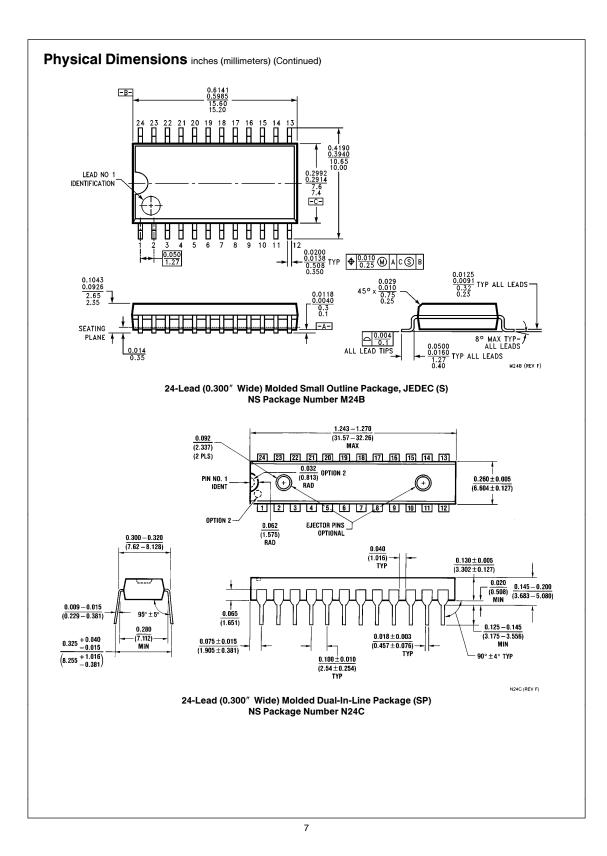
Military Commercial	−55°C to +125°C 0°C to +70°C
Supply Voltage	
Military	+ 4.5V to + 5.5V
Commercial	+4.5V to +5.5V

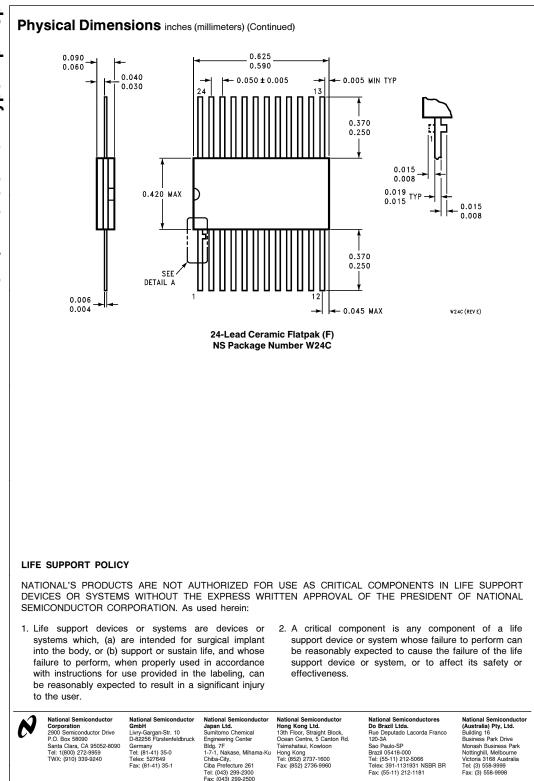
DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	v _{cc}	Conditions	
Symbol	Farame	lei	Min	Тур	Max	Units	vcc	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7			V	Min		
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$	
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Мах	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \mu A$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OZH}	Output Leakage Curr	ent			50	μA	Max	$V_{OUT} = 2.7V$	
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$	
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{ZZ}	Buss Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V$	
I _{CCZ}	Power Supply Curren	t		75	90	mA	Max	V _O = HIGH Z	


			74F		54F		74F		
Symbol	Parameter	$\begin{array}{l} {\sf T_A}=\ + {\sf 25^{\circ}C} \\ {\sf V_{CC}}=\ + {\sf 5.0V} \\ {\sf C_L}=\ {\sf 50\ pF} \end{array}$			T _A , V _{CC} = Mil C _L = 50 pF		T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Мах	Min	Мах	
f _{max}	Maximum Clock Frequency	100	160		60		70		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to O _n	2.0 2.0	6.5 6.6	9.5 9.5	2.0 2.0	10.5 10.5	2.0 2.0	10.5 10.5	ns
t _{PHL}	Propagation Delay CLR to O _n	4.0	7.4	12.0	4.0	13.0	4.0	13.0	ns
t _{PZH} t _{PZL}	Output Enable Time OE to O _n	2.0 2.0	6.5 6.6	10.5 10.5	2.0 2.0	13.0 13.0	2.0 2.0	11.5 11.5	- ns
t _{PHZ} t _{PLZ}	Output Disable Time \overline{OE} to O _n	1.5 1.5	3.5 3.3	7.0 7.0	1.0 1.0	7.5 7.5	1.5 1.5	7.5 7.5	


AC Operating Requirements


		$74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		54	F	7	4F	
Symbol	Parameter			${\sf T}_{\sf A}, {\sf V}_{\sf CC}={\sf Mil}$		$\mathbf{T_{A},V_{CC}=Com}$		Units
		Min	Max	Min	Max	Min	Мах	
t _s (H) t _s (L)	Setup Time, HIGH or LOW D _n to CP	2.5 2.5		4.0 4.0		3.0 3.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW D _n to CP	2.5 2.5		2.5 2.5		2.5 2.5		- 113
t _s (H) t _s (L)	Setup Time, HIGH or LOW EN to CP	4.5 2.5		5.0 3.0		5.0 3.0		– ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW EN to CP	2.0 0		3.0 2.0		1.0 0		- 113
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	5.0 5.0		6.0 6.0		6.0 6.0		ns
t _w (L)	CLR Pulse Width, LOW	5.0		5.0		5.0		ns
t _{rec}	CLR Recovery Time	5.0		5.0		5.0		ns


Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

54F/74F825 8-Bit D-Type Flip-Flop