74F779

8-Bit Bidirectional Binary Counter with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F779 is a fully synchronous 8 -stage up/down counter with multiplexed TRI-STATE I/O ports for bus-oriented applications. All control functions (hold, count up, count down, synchronous load) are controlled by two mode pins ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The device also features carry lookahead for easy cascading. All state changes are initiated by the rising edge of the clock.

Features

- Multiplexed TRI-STATE I/O ports
- Built-in lookahead carry capability

■ Count frequency 100 MHz typ

- Supply current 80 mA typ

■ Guaranteed 4000 V minimum ESD protection

- Available in SOIC (300 mil only)

Commercial	Package Number	Package Description
74F779PC	N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
74F779SC (Note 1)	M16B	16-Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline, JEDEC

Note 1: Devices also available in $13^{\prime \prime}$ reel. Use suffix $=$ SCX.

Logic Symbol

TL/F/9593-1

Connection Diagram

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Unit Loading/Fan Out

Pin Names	Description	74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	Data Inputs	0.25/0.33	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
	Data Outputs	75/15 (12.5)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
S_{0}, S_{1}	Select Inputs	0.25/0.33	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
OE	Output Enable Input (Active LOW)	0.25/0.33	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
$\overline{\text { CET }}$	Count Enable Trickle Input (Active LOW)	0.25/0.33	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	0.25/0.33	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal Count Output (Active LOW)	25/12.5	-1 mA/20 mA

Function Table					
S_{1}	S_{0}	CET	$\overline{O E}$	CP	Function
X	X	X	H	X	$1 / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{7}$ in High Z
X	X	X	L	X	Flip-Flop Outputs Appear on I/O Lines
L	L	X	H	Ω	Parallel Load All Flip-Flops
		H	X	\checkmark	Hold ($\overline{\mathrm{TC}}$ Held HIGH)
H	H	X	X	\checkmark	Hold
H	L	L	X	\checkmark	Count Up
L	H	L	X	Γ	Count Down

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\widetilde{ }=$ LOW-to-HIGH Clock Transition
(Not LL) means S_{0} and S_{1} should never both be LOW level at the same time.

Absolute Maximum Ratings (Note 1)

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias Plastic
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output TRI-STATE Output
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
ESD Last Passing Voltage (Min)
4000 V

Recommended Operating Conditions

Free Air Ambient Temperature

Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Commercial	+4.5 V to +5.5 V

$$
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

DC Electrical Characteristics

Symbol	Parameter		74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.7 \end{aligned}$			V	Min	$\mathrm{IOH}=-3 \mathrm{~mA}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current	74F			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ (Non-I/O Pins)
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	74F			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ (Non-I/O Pins)
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown (I/O)	74F			0.5	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{I} / \mathrm{O}_{\mathrm{n}}\right)$
ICEX	Output HIGH Leakage Current	74F			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$V_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All other pins grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$V_{\text {IOD }}=150 \mathrm{mV}$ All other pins grounded
I_{zz}	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
IIL	Input LOW Current				-0.2	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ (Non I/O Pins)
$\mathrm{IIH}+\mathrm{I}_{\text {OZH }}$	Output Leakage Cur				70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
$\mathrm{I}_{\mathrm{IL}}+\mathrm{I}_{\text {OZL }}$	Output Leakage Cur				-200	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
los	Output Short-Circuit	urrent	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICCH	Power Supply Curre				90	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Curre				105	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Curre				110	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics

Symbol	Parameter	74F			74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	105		90		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to I/On	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 11.0 \\ \hline \end{gathered}$	$\begin{array}{r} 3.0 \\ 5.0 \\ \hline \end{array}$	$\begin{gathered} 8.5 \\ 11.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to TC	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.3 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & 2.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.8 \\ & 6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.0 \\ 8.5 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay SN to TC	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{gathered} 7.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 10.5 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter					Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$		
		Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time Sn to CP	$\begin{aligned} & 9.5 \\ & 9.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time Sn to CP	$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time CET to CP	$\begin{array}{r} 7.0 \\ 7.0 \\ \hline \end{array}$		$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time $\overline{\mathrm{CET}}$ to CP	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Clock Pulse Width High or Low	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where a package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

