

Connection Diagrams

192021222324
$B_{0} \overline{O E} T / \bar{R} N C A_{0} A_{1} A_{2}$
TL/F/9584-3

Unit Loading/Fan Out

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Data Inputs/	4.5/0.15	$90 \mu \mathrm{~A} /-90 \mu \mathrm{~A}$
	TRI-STATE Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$B_{0}-B_{7}$	Data Inputs/	3.5/0.117	$70 \mu \mathrm{~A} /-70 \mu \mathrm{~A}$
	TRI-STATE Outputs	600/106.6 (80)	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$
T//̄	Transmit/Receive Input	2.0/0.067	$40 \mu \mathrm{~A} /-40 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Enable Input	2.0/0.067	$40 \mu \mathrm{~A} /-40 \mu \mathrm{~A}$
PARITY	Parity Input/	3.5/0.117	$70 \mu \mathrm{~A} /-70 \mu \mathrm{~A}$
	TRI-STATE Output	600/106.6 (80)	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$
ODD/EVEN	ODD/EVEN Parity Input	1.0/0.033	$20 \mu \mathrm{~A} /-20 \mu \mathrm{~A}$
ERROR	Error Output	600/106.6 (80)	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$

Functional Description

The Transmit/Receive (T/伿) input determines the direction of the data flow through the bidirectional transceivers. Transmit (active HIGH) enables data from the A port to the B port; Receive (active LOW) enables data from the B port to the A port.
The Output Enable ($\overline{\mathrm{OE} \text {) input disables the parity and }}$ ERROR outputs and both the A and B ports by placing them in a HIGH-Z condition when the Output Enable input is HIGH.
When transmitting ($\mathrm{T} / \overline{\mathrm{R}} \mathrm{HIGH}$), the parity generator detects whether an even or odd number of bits on the A port are HIGH and compares these with the condition of the pari-
ty select (ODD/EVEN). If the Parity Select is HIGH and an even number of A inputs are HIGH, the Parity output is HIGH.
In receiving mode (T/R LOW), the parity select and number of HIGH inputs on port B are compared to the condition of the Parity input. If an even number of bits on the B port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, then ERROR will be HIGH to indicate no error. If an odd number of bits on the B port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, the ERROR will be LOW indicating an error.

Function Table						
Number of Inputs That Are High	Inputs			Input/ Output	Outputs	
	$\overline{O E}$	T/ \bar{R}	ODD/EVEN	Parity	ERROR	Outputs Mode
$0,2,4,6,8$	L	H	H	H	Z	Transmit
	L	H	L	L	Z	Transmit
	L	L	H	H	H	Receive
	L	L	H	L	L	Receive
	L	L	L	H	L	Receive
	L	L	L	L	H	Receive
1, 3, 5, 7	L	H	H	L	Z	Transmit
	L	H	L	H	Z	Transmit
	L	L	H	H	L	Receive
	L	L	H	L	H	Receive
	L	L	L	H	H	Receive
	L	L	L	L	L	Receive
Immaterial	H	X	X	Z	Z	Z

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
$Z=$ High Impedance
Function Table

Inputs		Outputs
$\overline{\mathrm{OE}}$	$\mathbf{T} / \overline{\mathbf{R}}$	
L	L	Bus B Data to Bus A
L	H	
H	X	High-Z State

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias Plastic
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
Input Current (Note 2)
-0.5 V to V_{CC}
-0.5 V to +5.5 V
(with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output

Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military

Commercial
Supply Voltage
Military +4.5 V to +5.5 V
Commercia
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

+4.5 V to +5.5 V
+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74 F 5\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.5 2.4 2.0 2.5 2.4 2.0 2.7 2.7			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}, \text { Parity, } \overline{\text { ERROR }}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~B}_{n}, \text { Parity, } \overline{\text { ERROR }}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(A_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(A_{n} \mathrm{~B}_{n}, \text { Parity, ERROR }\right) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~B}_{n}, \text { Parity, } \overline{\text { ERROR }}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}, \text { Parity, } \overline{\text { ERROR }}\right) \\ & \hline \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{gathered} 0.5 \\ 0.55 \\ 0.5 \\ 0.55 \\ \hline \end{gathered}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(\mathrm{~B}_{\mathrm{n}},\right. \text { Parity, } \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~B}_{\mathrm{n}} \text { Parity, } \overline{\text { ERROR }}\right) \\ & \hline \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH C				$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\mathrm{ODD} / \overline{\mathrm{EVEN}}) \\ & \mathrm{V}_{\mathrm{IN}} 2.7 \mathrm{~V}(\mathrm{~T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}}) \\ & \hline \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH C Breakdown T				100	$\mu \mathrm{A}$	$V_{C C}=0$	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}(\mathrm{~T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}}, \mathrm{ODD} / \overline{\mathrm{EVEN}})$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH C Breakdown T				$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\text { Parity, } \mathrm{B}_{\mathrm{n}}\right) \\ & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}\right) \end{aligned}$
IIL	Input LOW Cu				$\begin{aligned} & -20 \\ & -40 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\mathrm{ODD} / \overline{\mathrm{EVEN}}) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\mathrm{~T} / \overline{\mathrm{R}}, \overline{\mathrm{OE})} \\ & \hline \end{aligned}$
$\mathrm{I}_{\mathrm{OZH}}$	Output Leaka	Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$ (ERROR)
lozL	Output Leaka	Current			-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ (ERROR)
$\mathrm{IIH}+\mathrm{I}_{\text {OZH }}$	Output Leaka	Current			$\begin{aligned} & 70 \\ & 90 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \hline \mathrm{V}_{\text {I/O }}=2.7 \mathrm{~V}\left(\mathrm{~B}_{\mathrm{n}}, \text { Parity }\right) \\ & \mathrm{V}_{\text {I/O }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}\right) \end{aligned}$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leaka	Current			$\begin{aligned} & -70 \\ & -90 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{1 / \mathrm{O}}=0.5 \mathrm{~V}\left(\mathrm{~B}_{n}, \text { Parity }\right) \\ & \mathrm{V}_{1 / O}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}\right) \end{aligned}$
los	Output Short-	cuit Current	$\begin{gathered} \hline-60 \\ -100 \end{gathered}$		$\begin{aligned} & -150 \\ & -225 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~B}_{\mathrm{n}},\right. \text { Parity, } \end{aligned}$
ICEX	Output HIGH Current	akage			$\begin{array}{r} 250 \\ 1.0 \\ 2.0 \\ \hline \end{array}$	$\mu \mathrm{A}$ mA mA	Max Max Max	$\begin{aligned} & V_{\text {OUT }}=V_{\text {CC }}(\overline{\text { ERROR }}) \\ & V_{\text {OUT }}=V_{\text {CC }}\left(B_{n}, \text { Parity }\right) \\ & V_{\text {OUT }}=V_{\text {CC }}\left(A_{n}\right) \end{aligned}$
I_{Zz}	Bus Drainage				500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$ ($\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$, Parity, ERROR $)$
ICCH	Power Supply	urrent		101	125	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply	urrent		112	150	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply	urrent		109	145	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n} to B_{n}, B_{n} to A_{n}	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.5 \\ 4 . .9 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n} to Parity	$\begin{array}{r} 6.5 \\ 7.0 \\ \hline \end{array}$	$\begin{aligned} & 10.1 \\ & 10.9 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.0 \\ 15.0 \\ \hline \end{array}$	$\begin{array}{r} 5.5 \\ 5.5 \\ \hline \end{array}$	$\begin{array}{r} 18.0 \\ 20.5 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 16.0 \\ 16.5 \\ \hline \end{array}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay ODD/EVEN to PARITY	$\begin{array}{r} 4.5 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & 7.8 \\ & 8.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.5 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay ODD/EVEN to ERROR	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.5 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay B_{n} to ERROR	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.5 \\ & 21.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.0 \\ & 28.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 23.0 \\ 23.5 \\ \hline \end{array}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay PARITY to ERROR	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{array}{r} 10.8 \\ 11.8 \\ \hline \end{array}$	$\begin{array}{r} 15.5 \\ 16.5 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.0 \\ 22.0 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 17.0 \\ 18.5 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{O E}$ to A_{n} / B_{n}	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{array}{r} 2.5 \\ 3.5 \\ \hline \end{array}$	$\begin{array}{r} 11.0 \\ 13.5 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 11.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{O E}$ to A_{n} / B_{n}	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\overline{\mathrm{ERROR}}$ (Note 1)	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.7 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{array}{r} 2.5 \\ 3.5 \\ \hline \end{array}$	$\begin{aligned} & 11.0 \\ & 13.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time $\overline{\text { OE }}$ to ERROR	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{O E}$ to PARITY	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.7 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \text { tphz } \\ & \text { tpLz } \\ & \hline \end{aligned}$	Output Disable Time OE to PARITY			8.0 7.5		9.5 8.5			ns

Note 1: These delay times reflect the TRI-STATE recovery time only and not the signal time through the buffers or the parity check circuity. To assure VALID information at the ERROR pin, time must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuitry (same as A to PARITY), and to the ERROR output after the $\overline{\text { ERROR }}$ pin has been enabled (Output Enable times). VALID data at the $\overline{\text { ERROR pin } \geq \text { (A to PARITY) }+ \text { (Output }}$ Enable Time).

Ordering Information

The device number is used to form part of a simplified purchasing code where a package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

