

Functional Description

The output enable $(\overline{\mathrm{OE}})$ is active LOW. If the device is disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), the outputs are in the high impedance state. The transmit/receive input (T / \bar{R}) controls whether data is transmitted from the A bus to the B bus or from the B bus to the A bus. When T/ \bar{R} is LOW, B data is sent to the A bus. If T / \bar{R} is HIGH, A data is sent to the B bus.

Function Table

Inputs		Outputs	
$\overline{\mathrm{OE}}$	T/兂	'F640	'F645
L	L	Bus $\overline{\mathrm{B}}$ data to Bus A	Bus B data to Bus A
L	H	Bus $\overline{\mathrm{A}}$ data to Bus B	Bus A data to Bus B
H	X	Z	Z

$H=$ High voltage level
$L=$ Low voltage level
L = Low voltage level
X $=$ Don't care
Z $=$ High-impedance state

Logic Diagrams

TL/F/10267-4

Absolute Maximum Ratings (Note 1)

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias Plastic
V_{CC} Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
-0.5 V to V_{CC}
-0.5 V to +5.5 V

Current Applied to Outpu in LOW State (Max)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
ESD Last Passing Voltage (Min) 4000V
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.
Recommended Operating Conditions

Free Air Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Commercial	
Supply Voltage	

DC Electrical Characteristics

Symbol	Parameter		74F		Units	$\mathrm{V}_{\text {cc }}$	Conditions
			Min	Typ Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0		V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ (Non I/O Pins)
V_{OH}	Output HIGH Voltage	$74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0		V	Min	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
V_{OL}	Output LOW Voltage	74F 10\% $\mathrm{V}_{\text {CC }}$		0.55	V	Min	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current	74F		5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ (Non I/O Pins)
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	74F		7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ (Non I/O Pins)
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown (I/O)	74F		0.5	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$I_{\text {CEX }}$	Output HIGH Leakage Current	74F		50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75		V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F		3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current			-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ (Non I/O Pins)
$\mathrm{IIH}^{+} \mathrm{I}_{\text {OZH }}$	Output Leakage Cur			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Cur			-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
los	Output Short-Circuit	urrent	-100	-225	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25$
ICCH	Power Supply Curre	('F640)		80	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}, \mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}$
${ }^{\text {CCL }}$	Power Supply Curre	('F640)		80	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Curre	('F640)		96	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Curre	('F645)		65	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Curre	('F645)		80	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{LOW}, \mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}$
$\mathrm{I}_{\text {CCZ }}$	Power Supply Curre	('F645)		90	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

'F640 AC Electrical Characteristics:

Symbol	Parameter	74F			74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A Input to B Output	$\begin{array}{r} 2.5 \\ 2.0 \\ \hline \end{array}$		$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay B Input to A Output	$\begin{array}{r} 2.5 \\ 2.0 \\ \hline \end{array}$		$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} 8.0 \\ 7.0 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\overline{\mathrm{OE}}$ Input to A Output	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$		$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Disable Time $\overline{\mathrm{OE}}$ Input to A Output	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \\ & \hline \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\overline{\mathrm{OE}}$ Input to B Output	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Disable Time $\overline{\text { OE Input to B Output }}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	

'F645 AC Electrical Characteristics:

Symbol	Parameter	74F			74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A Input to B Output	$\begin{array}{r} 1.5 \\ 2.0 \\ \hline \end{array}$		$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay B Input to A Output	$\begin{array}{r} 1.5 \\ 2.0 \\ \hline \end{array}$		$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\overline{\mathrm{OE}}$ Input to A Output	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$		$\begin{aligned} & 8.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Disable Time $\overline{\mathrm{OE}}$ Input to A Output	$\begin{aligned} & \hline 1.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 7.0 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \\ & \hline \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time OE Input to B Output	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Disable Time OE Input to B Output	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \\ & \hline \end{aligned}$	

Ordering Information

The device number is used to form part of a simplified purchasing code where a package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

20-Lead (0.300" Wide) Molded Small Outline Package, JEDEC (S)
NS Package Number M20B

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

