SEMICONDUCTOR™ 74F620 • 74F623

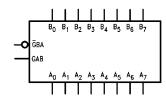
Inverting Octal Bus Transceiver with 3-STATE Outputs

General Description

FAIRCHILD

These devices are octal bus transceivers designed for asynchronous two-way data flow between the A and B busses. Both busses are capable of sinking 64 mA and have 3-STATE outputs. Dual enable pins (GAB, GBA) allow data transmission from the A bus to the B bus or from the B bus to the A bus. The 74F620 is an inverting option of the 74F623.

Features


- Designed for asynchronous two-way data flow between busses
- Outputs sink 64 mA
- Dual enable inputs control direction of data flow
- Guaranteed 4000V minimum ESD protection
- 74F620 is an inverting option of the 74F623

Ordering Code:


Order Number	Package Number	Package Description
Order Number	Fackage Number	Fackage Description
74F620PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
74F623SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F623PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
74F623PC		20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

FAST® is a registered trademark of Fairchild Semiconductor Corporation

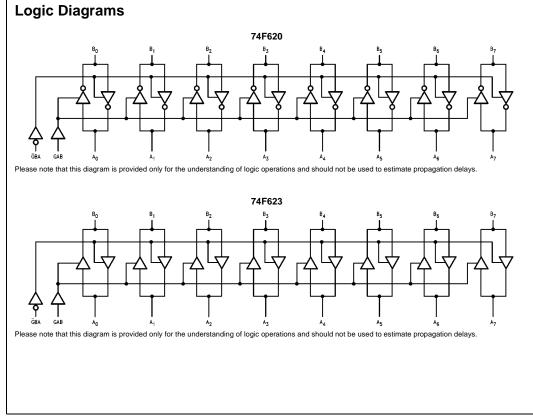
www.fairchildsemi.com

© 1999 Fairchild Semiconductor Corporation DS009577

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
GBA, GAB	Enable Inputs	1.0/1.0	20 µA/-0.6 mA	
A ₀ –A ₇	A Inputs or	3.5/1.083	70 μA/–0.4 mA	
	3-STATE Outputs	150/40	–3 mA/64 mA	
B ₀ –B ₇	B Inputs or	3.5/1.083	70 μA/–0.4 mA	
	3-STATE Outputs	150/40	–3 mA/64 mA	

Functional Description


The enable inputs GAB and $\overline{\text{G}}\text{BA}$ control whether data is transmitted from the A bus to the B bus or from the B bus to the A bus. If both GBA and GAB are disabled (GBA HIGH and GAB LOW), the outputs are in the high impedance state and data is stored at the A and B busses. When GBA is active LOW, B data is sent to the A bus. When GAB is active HIGH, data from the A bus is sent to the B bus. If both enable inputs are active (GBA LOW and GAB HIGH) B data is sent to the A bus while A data is sent to the B bus.

Function Table

Enable Inputs		Operation			
GBA	GAB	74F620	74F623		
L	L	B Data to A Bus	B Data to A Bus		
н	н	A Data to B Bus	A Data to B Bus		
Н	L	Z	Z		
L	н	B Data to A Bus,	B Data to A Bus,		
		A Data to B Bus	A Data to B Bus		

H = HIGH Voltage Level L = LOW Voltage Level

Z = High Impedance

www.fairchildsemi.com

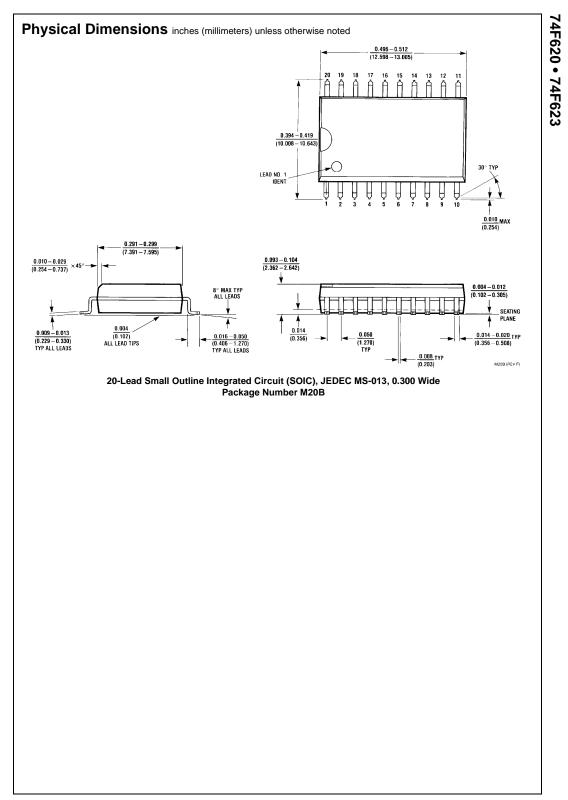
Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

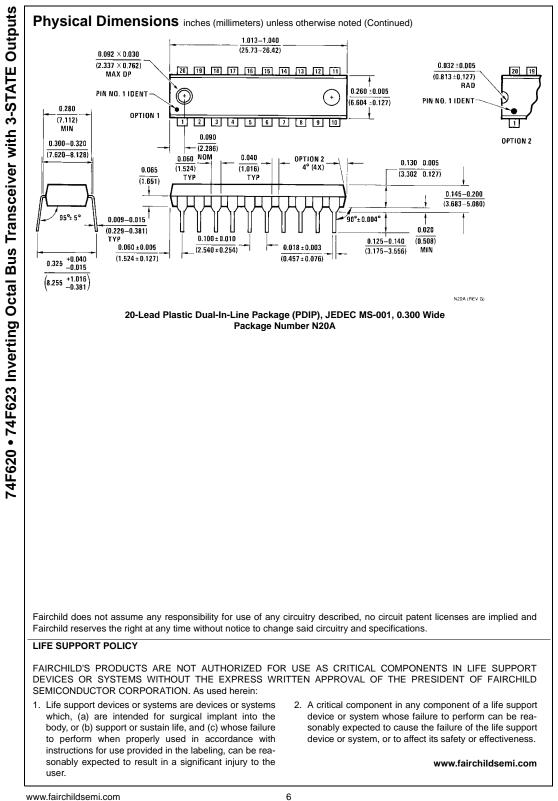
Recommended Operating Conditions

Free Air Ambient Temperature	0°C to +70°C
Supply Voltage	+4.5V to +5.5V

74F620 • 74F623


Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA (Non I/O Pins)
V _{OH}	Output HIGH 10% V _{CC}	2.0			V	Min	$I_{OH} = -15 \text{ mA} (A_n, B_n)$
V _{OL}	Output LOW 10% V _{CC}			0.55	V	Min	$I_{OL} = 64 \text{ mA} (A_n, B_n)$
IIH	Input HIGH Current			5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μΑ	Max	V _{IN} = 7.0V (GBA, GAB)
I _{BVIT}	Input HIGH Current Breakdown (I/O)			0.5	mA	Max	$V_{IN} = 5.5V (A_n, B_n)$
I _{CEX}	Output HIGH Leakage Current			50	μΑ	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage Test	4.75			V	0.0	$I_{ID} = 1.9 \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
IIL	Input LOW Current			-0.6	mA	Max	V _{IN} = 0.5V (Non I/O Pins)
I _{IH} + I _{OZH}	Output Leakage Current			70	μΑ	Max	$V_{OUT} = 2.7V (A_n, B_n)$
$I_{IL} + I_{OZL}$	Output Leakage Current			-650	μΑ	Max	$V_{OUT} = 0.5V (A_n, B_n)$
los	Output Short-Circuit Current	-100		-225	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0V	V _{OUT} = 5.25V
I _{CCH}	Power Supply Current (74F620)			82	mA	Max	$V_0 = HIGH, V_{IN} = 0.2V$
I _{CCL}	Power Supply Current (74F620)			82	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current (74F620)	1		95	mA	Max	V _O = HIGH Z
ICCH	Power Supply Current (74F623)	1		65	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current (74F623)	1		82	mA	Max	$V_0 = LOW, V_{IN} = 0.2V$
I _{CCZ}	Power Supply Current (74F623)			85	mA	Max	V _O = HIGH Z

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$			$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$	
		Min	C _L = 50 pF	Max	C _L =	50 pF Max	-
t _{PLH}	Propagation Delay	2.5	iyp	7.5	2.0	8.0	
t _{PHL}	A Input to B Output (74F620)	2.0		7.0	2.0	7.0	ns
t _{PLH}	Propagation Delay	2.5		7.5	2.0	8.0	ns
tPHL	B Input to A Output (74F620)	2.0		7.0	2.0	7.0	
t _{PLH}	Propagation Delay	1.5		6.5	1.5	7.5	ns
t _{PHL}	A Input to B Output (74F623)	2.0		7.0	2.0	7.5	
t _{PLH}	Propagation Delay	1.5		6.5	1.5	7.5	ns
t _{PHL}	B Input to A Output (74F623)	2.0		7.0	2.0	7.5	
t _{PZH}	Enable Time	2.0		7.0	2.0	8.0	
t _{PZL}	GBA Input to A Output	2.5		8.0	2.0	8.5	
t _{PHZ}	Disable Time	1.5		6.5	1.5	7.5	ns
t _{PLZ}	GBA Input to A Output	1.0		5.5	1.0	5.5	
t _{PZH}	Enable Time	2.0		7.5	2.0	8.5	
t _{PZL}	GAB Input to B Output (74F620)	3.0		8.0	2.0	8.5	
t _{PHZ}	Disable Time	2.5		8.0	2.0	9.0	ns
t _{PLZ}	GAB Input to B Output (74F620)	2.0		7.5	2.0	8.0	
t _{PZH}	Enable Time	2.0		7.5	2.0	8.5	1
t _{PZL}	GAB Input to B Output (74F623)	2.5		8.0	2.0	8.5	ns
t _{PHZ}	Disable Time	2.0		8.0	2.0	9.0	115
t _{PLZ}	GAB Input to B Output (74F623)	2.0		8.0	2.0	8.0	I

www.fairchildsemi.com

