

74F569 4-Bit Bidirectional Counter with TRI-STATE® Outputs

General Description

The 'F569 is a fully synchronous, reversible counter with TRI-STATE outputs. The 'F569 is a binary counter, featuring preset capability for programmable operation, carry lookahead for easy cascading, and a U/\overline{D} input to control the direction of counting. For maximum flexibility there are both synchronous and master asynchronous reset inputs as well as both Clocked Carry (\overline{CC}) and Terminal Count (\overline{TC}) outputs. All state changes except Master Reset are initiated by the rising edge of the clock. A HIGH signal on the Output

Enable $(\overline{\text{OE}})$ input forces the output buffers into the high impedance state but does not prevent counting, resetting or parallel loading.

Features

- Synchronous counting and loading
- Lookahead carry capability for easy cascading
- Preset capability for programmable operation
- TRI-STATE outputs for bus organized systems

Commercial	Package Number	Package Description
74F569PC	N20A	20-Lead (0.300" Wide) Molded Dual-In-Line
74F569SC (Note 1)	M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
74F569SJ (Note 1)	M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Logic Symbols

g. c c y c . c

Connection Diagram

FAST® and TRI-STATE® are registered trademarks of National Semiconductor Corporation.

Unit Loading/Fan Out

		74F				
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}			
P ₀ -P ₃	Parallel Data Inputs	1.0/1.0	20 μA/ – 0.6 mA			
CEP	Count Enable Parallel Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA			
CET	Count Enable Trickle Input (Active LOW)	1.0/1.0	20 μA/ – 1.2 mA			
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/-0.6 mA			
PE	Parallel Enable Input (Active LOW)	1.0/1.0	20 μA/ – 1.2 mA			
U/D	Up/Down Count Control Input	1.0/1.0	20 μA/ – 0.6 mA			
ŌĒ	Output Enable Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA			
MR	Master Reset Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA			
SR	Synchronous Reset Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA			
O ₀ -O ₃	TRI-STATE Parallel Data Outputs	150/40(33.3)	-3 mA/24 mA (20 mA)			
TC	Terminal Count Output (Active LOW)	50/33.3	-1 mA/20 mA			
CC	Clocked Carry Output (Active LOW)	50/33.3	−1 mA/20 mA			

Functional Description

The 'F569 counts in the modulo-16 binary sequence. From state 15 it will increment to state 0 in the Up mode; in the Down mode it will decrement from 0 to 15. The clock inputs of all flip-flops are driven in parallel through a clock buffer. All state changes (except due to Master Reset) occurs synchronously with the LOW-to-HIGH transition of the Clock Pulse (CP) input signal.

The circuits have five fundamental modes of operation, in order of precedence: asynchronous reset, synchronous reset, parallel load, count and hold. Five control inputs-Master Reset (MR), Synchronous Reset (SR), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle \overline{CET})—plus the Up/Down ($\overline{U}/\overline{D}$) input, determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces the flip-flop Q outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows the Q outputs to go LOW on the next rising edge of CP. A LOW signal on \overline{PE} overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With MR, SR and PE HIGH, CEP and CET permit counting when both are LOW. Conversely, a HIGH signal on either CEP or CET inhibits count-

The 'F569 uses edge-triggered flip-flops and changing the \overline{SR} , \overline{PE} , \overline{CEP} , \overline{CET} or U/\overline{D} inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (\overline{TC}) output is normally HIGH and goes LOW providing \overline{CET} is LOW, when the counter reaches zero in the Down mode, or reaches maximum

(15) in the Up mode. \overline{TC} will then remain LOW until a state change occurs, whether by counting or presetting, or until U/ \overline{D} or \overline{CET} is changed. To implement synchronous multistage counters, the connections between the \overline{TC} output and the \overline{CEP} and \overline{CET} inputs can provide either slow or fast carry propagation.

Figure 1 shows the connections for simple ripple carry, in which the clock period must be longer than the CP to $\overline{\text{TC}}$ delay of the first stage, plus the cumulative $\overline{\text{CET}}$ to $\overline{\text{TC}}$ delays of the intermediate stages, plus the $\overline{\text{CET}}$ to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure 2 are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 16 clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limits the clock period is the CP to TC delay of the first stage plus the CEP to CP setup time of the last stage. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or counters. For such applications, the Clocked Carry (CC) output is provided. The CC output is normally HIGH. When CEP, CET, and TC are LOW, the CC output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again, as shown in the \overline{CC} Truth Table. When the Output Enable (\overline{OE}) is LOW, the parallel data outputs $O_0 - O_3$ are active and follow the flip-flop Q outputs. A HIGH signal on OE forces O₀-O₃ to the High Z state but does not prevent counting, loading or resetting.

Logic Equations

Count Enable = $\overline{\text{CEP}} \bullet \overline{\text{CET}} \bullet \text{PE}$ Up: $\overline{\text{TC}} = Q_0 \bullet Q_1 \bullet Q_2 \bullet Q_3 \bullet \text{(Up)} \bullet \overline{\text{CET}}$ Down: $\overline{\text{TC}} = \overline{Q}_0 \bullet \overline{Q}_1 \bullet \overline{Q}_2 \bullet \overline{Q}_3 \bullet \text{(Down)} \bullet \overline{\text{CET}}$

CC Truth Table

	Inputs								
SR	PE	CEP	CET	TC*	СР	CC			
L	Х	Х	Х	Х	Х	Н			
X	L	Х	Х	X	Х	Н			
X	X	Н	Х	X	Х	Н			
X	X	X	Н	X	Х	Н			
X	X	Х	Х	Н	Х	н			
Н	Н	L	L	L	┰	ᅩ			

*TC is generated internally
H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

□ = HIGH-to-LOW-to-HIGH Clock Transition

Mode Select Table

		Ir		Operating		
MR	SR	PE	CEP	CET	U/D	Mode
L	Х	Х	Х	Х	Х	Asynchronous Reset
Н	L	Х	Х	X	Х	Synchronous Reset
Н	Н	L	X	X	Х	Parallel Load
н	Н	Н	Н	X	Х	Hold
Н	Н	Н	X	Н	X	Hold
Н	Н	Н	L	L	Н	Count Up
Н	Н	Н	L	L	L	Count Down

H=HIGH Voltage Level L=LOW Voltage Level X=Immaterial

FIGURE 1: Multistage Counter with Ripple Carry

FIGURE 2: Multistage Counter with Lookahead Carry

TL/F/9565-6

State Diagram

TL/F/9565-8

Absolute Maximum Ratings (Note 1)

 $\begin{array}{lll} \mbox{Storage Temperature} & -65\mbox{°C to} + 150\mbox{°C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{°C to} + 125\mbox{°C} \\ \mbox{Junction Temperature under Bias} & -55\mbox{°C to} + 175\mbox{°C} \\ \end{array}$

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V
Input Voltage (Note 2) -0.5V to +7.0V
Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{TRI-STATE Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Commercial $0^{\circ}\text{C to } + 70^{\circ}\text{C}$

Supply Voltage Commercial

+4.5V to +5.5V

DC Electrical Characteristics

Symbol	Parame	tor	74F		Units	Vcc	Conditions	
Symbol	Farame		Min	Тур	Max	Oilles	VCC	Conditions
V _{IH}	Input HIGH Voltage		2.0			٧		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	٧		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode V	oltage			-1.2	٧	Min	$I_{\text{IN}} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.7 2.7			٧	Min	$\begin{split} I_{OH} &= -1 \text{ mA } (\overline{TC}, \overline{CC}, O_n) \\ I_{OH} &= -3 \text{ mA } (O_n) \\ I_{OH} &= -1 \text{ mA } (\overline{TC}, \overline{CC}, O_n) \\ I_{OH} &= -3 \text{ mA } (O_n) \end{split}$
V _{OL}	Output LOW Voltage	74F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	٧	Min	$I_{OL} = 20 \text{ mA } (\overline{TC}, \overline{CC})$ $I_{OL} = 24 \text{ mA } (O_n)$
I _{IH}	Input HIGH Current	74F			5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	74F			7.0	μА	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Current	74F			50	μА	Max	$V_{OUT} = V_{CC} (\overline{TC}, \overline{CC}, O_n)$
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \ \mu\text{A}$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6 -1.2	mA mA	Max Max	$ \begin{array}{c} V_{\text{IN}} = 0.5 V (P_{\text{n}}, \overline{\text{CEP}}, \text{CP}, \text{U}/\overline{\text{D}}, \overline{\text{OE}}, \overline{\text{MR}}, \overline{\text{SR}}) \\ V_{\text{IN}} = 0.5 V (\overline{\text{PE}}, \overline{\text{CET}}) \end{array} $

DC Electrical Characteristic (Continued)

Symbol	Parameter		74F		Units	V _{CC}	Conditions
	raiametei	Min	Тур	Max	Office	* CC	Conditions
lozh	Output Leakage Current			50	μΑ	Max	$V_{OUT} = 2.7V (O_n)$
lozL	Output Leakage Current			-50	μΑ	Max	$V_{OUT} = 0.5V (O_n)$
I _{OS}	Output Short-Circuit Current	-60		-150	mA	Max	$V_{OUT} = 0V (\overline{TC}, \overline{CC}, O_n)$
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0V	$V_{OUT} = 5.25V (O_n)$
Іссн	Power Supply Current		45	67	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current		45	67	mA	Max	$V_O = LOW$
I _{CCZ}	Power Supply Current		45	67	mA	Max	V _O = HIGH Z

AC Electrical Characteristics

			74F		7	4F	
Symbol	Parameter		$egin{aligned} T_{A} = +25^{\circ}C \ V_{CC} = +5.0 \ C_{L} = 50 \ pF \end{aligned}$		T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	
f _{max}	Maximum Clock Frequency	90			70		MHz
t _{PLH} t _{PHL}	Propagation Delay CP to O _n (PE HIGH or LOW)	3.0 4.0	6.5 9.0	8.5 11.5	3.0 4.0	9.5 13.0	ns
t _{PLH}	Propagation Delay CP to TC	5.5 4.0	12.0 8.5	15.5 12.5	5.5 4.0	17.5 13.0	ns
t _{PLH} t _{PHL}	Propagation Delay CET to TC	2.5 2.5	4.5 6.0	6.5 11.0	2.5 2.5	7.0 12.0	ns
t _{PLH} t _{PHL}	Propagation Delay U/D̄ to TC	3.5 4.0	8.5 8.0	11.5 12.0	3.5 4.0	12.5 13.0	ns
t _{PLH} t _{PHL}	Propagation Delay CP to CC	2.5 2.0	5.5 4.5	7.0 6.0	2.0 2.0	8.0 7.0	ns
t _{PLH} t _{PHL}	Propagation Delay CEP, CET to CC	2.5 4.0	5.0 8.5	6.5 11.0	2.0 4.0	7.5 12.5	ns
t _{PHL}	Propagation Delay MR to On	5.0	10.0	13.0	5.0	14.5	ns
t _{PZH} t _{PZL}	Output Enable Time OE to On	2.5 3.0	5.5 6.0	8.0 9.0	2.5 3.0	8.5 10.0	- ns
t _{PHZ} t _{PLZ}	Output Disable Time OE to On	1.5 2.0	5.0 4.5	7.0 6.0	1.5 2.0	8.0 7.0	113

AC	Opera	atina l	Reau	ireme	ents
70	Opeid	auniy i	nequ		711LO

		7	4F	7	74F	
Symbol	Parameter		+ 25°C + 5.0V	T _A , V _{CC} = Com		Units
		Min	Max	Min	Max	
$t_s(H)$ $t_s(L)$	Setup Time, HIGH or LOW P _n to CP	4.0 4.0		4.5 4.5		
t _h (H) t _h (L)	Hold Time, HIGH or LOW P _n to CP	3.0 3.0		3.5 3.5		ns
t _S (H) t _S (L)	Setup Time, HIGH or LOW CEP or CET to CP	7.0 5.0		8.0 6.5		
t _h (H) t _h (L)	Hold Time, HIGH or LOW CEP or CET to CP	0 0.5		0 0.5		ns
t _s (H) t _s (L)	Setup Time, HIGH or LOW PE to CP	8.0 8.0		9.0 9.0		
t _h (H) t _h (L)	Hold Time, HIGH or LOW PE to CP	0.0 0		1.0 0		ns
t _s (H) t _s (L)	Setup Time, HIGH or LOW U/D to CP	11.0 7.0		12.5 8.5		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW U/D to CP	0 0		0		ns
$t_s(H)$ $t_s(L)$	Setup Time, HIGH or LOW SR to CP	10.5 8.5		11.0 9.5		
t _h (H) t _h (L)	Hold Time, HIGH or LOW SR to CP	0		0		ns
t _w (H) t _w (L)	CP Pulse Width, HIGH or LOW	4.0 7.0		4.5 8.0		ns
t _w (L)	MR Pulse Width, LOW	4.5		6.0		ns
t _{rec}	MR Recovery Time	6.0		8.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

20-Lead (0.300" Wide) Molded Dual-In-Line Package (P) NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: onlyeg@tevnz.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd.

13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

nton Rd. Fax: 81-043-299-240