

Unit Loading/Fan Out

Pin Names	Description	74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CEP}}$	Count Enable Parallel Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CET	Count Enable Trickle Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { PE }}$	Parallel Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
U/D	Up/Down Count Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { SR }}$	Synchronous Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$	TRI-STATE Parallel Data Outputs	150/40(33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
TC	Terminal Count Output (Active LOW)	50/33.3	-1 mA/20 mA
$\overline{\mathrm{CC}}$	Clocked Carry Output (Active LOW)	50/33.3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 'F569 counts in the modulo-16 binary sequence. From state 15 it will increment to state 0 in the Up mode; in the Down mode it will decrement from 0 to 15 . The clock inputs of all flip-flops are driven in parallel through a clock buffer. All state changes (except due to Master Reset) occurs synchronously with the LOW-to-HIGH transition of the Clock Pulse (CP) input signal.
The circuits have five fundamental modes of operation, in order of precedence: asynchronous reset, synchronous reset, parallel load, count and hold. Five control inputs-Master Reset ($\overline{\mathrm{MR}}$), Synchronous Reset ($\overline{\mathrm{SR}}$), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable Trickle $\overline{\mathrm{CET}}$)—plus the Up/Down (U/ $\overline{\mathrm{D}}$) input, determine the mode of operation, as shown in the Mode Select Table. A LOW signal on $\overline{M R}$ overrides all other inputs and asynchronously forces the flip-flop Q outputs LOW. A LOW signal on $\overline{S R}$ overrides counting and parallel loading and allows the Q outputs to go LOW on the next rising edge of CP. A LOW signal on $\overline{\mathrm{PE}}$ overrides counting and allows information on the Parallel Data $\left(P_{n}\right)$ inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{M R}, \overline{S R}$ and $\overline{P E}$ HIGH, $\overline{\mathrm{CEP}}$ and CET permit counting when both are LOW. Conversely, a HIGH signal on either CEP or CET inhibits counting.
The 'F569 uses edge-triggered flip-flops and changing the $\overline{\mathrm{SR}}, \overline{\mathrm{PE}}, \overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ or U/ $\overline{\mathrm{D}}$ inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.
Two types of outputs are provided as overflow/underflow indicators. The Terminal Count ($\overline{\mathrm{TC}}$) output is normally HIGH and goes LOW providing CET is LOW, when the counter reaches zero in the Down mode, or reaches maximum
(15) in the Up mode. TC will then remain LOW until a state change occurs, whether by counting or presetting, or until U / \bar{D} or $\overline{C E T}$ is changed. To implement synchronous multistage counters, the connections between the TC output and the $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ inputs can provide either slow or fast carry propagation.
Figure 1 shows the connections for simple ripple carry, in which the clock period must be longer than the CP to $\overline{\mathrm{TC}}$ delay of the first stage, plus the cumulative $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$ delays of the intermediate stages, plus the $\overline{\mathrm{CET}}$ to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure 2 are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 16 clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limits the clock period is the CP to $\overline{T C}$ delay of the first stage plus the $\overline{C E P}$ to CP setup time of the last stage. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or counters. For such applications, the Clocked Carry ($\overline{\mathrm{CC}}$) output is provided. The $\overline{\mathrm{CC}}$ output is normally HIGH. When CEP, $\overline{\mathrm{CET}}$, and TC are LOW, the $\overline{\mathrm{CC}}$ output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again, as shown in the $\overline{\mathrm{CC}}$ Truth Table. When the Output Enable ($\overline{\mathrm{OE}})$ is LOW, the parallel data outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ are active and follow the flip-flop Q outputs. A HIGH signal on $\overline{O E}$ forces $\mathrm{O}_{0}-\mathrm{O}_{3}$ to the High Z state but does not prevent counting, loading or resetting.

Logic Equations

Count Enable $=\overline{\mathrm{CEP}} \bullet \overline{\mathrm{CET}} \bullet \mathrm{PE}$
Up: $\overline{\mathrm{TC}}=\mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \bullet(\mathrm{Up}) \bullet \overline{\mathrm{CET}}$
Down: $\overline{T C}=\bar{Q}_{0} \bullet \bar{Q}_{1} \bullet \bar{Q}_{2} \bullet \bar{Q}_{3} \bullet($ Down $) \cdot \overline{\mathrm{CET}}$
$\overline{\mathrm{CC}}$ Truth Table

Inputs						
Output						
$\mathbf{~ S R}$	$\overline{\mathbf{P E}}$	$\overline{\text { CEP }}$	$\overline{\text { CET }}$	$\overline{\text { TC }}^{*}$	CP	CC
L	X	X	X	X	X	H
X	L	X	X	X	X	H
X	X	H	X	X	X	H
X	X	X	H	X	X	H
X	X	X	X	H	X	H
H	H	L	L	L	U	U

* $\overline{\mathrm{TC}}$ is generated internally

H = HIGH Voltage Level
L $=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\zeta=$ HIGH-to-LOW-to-HIGH Clock Transition
Mode Select Table

Inputs						
Operating Mode						
	$\overline{\text { SR }}$	$\overline{\mathbf{P E}}$	$\overline{\text { CEP }}$	$\overline{\mathbf{C E T}}$	U/ $\overline{\mathbf{D}}$	
L	X	X	X	X	X	Asynchronous Reset
H	L	X	X	X	X	Synchronous Reset
H	H	L	X	X	X	Parallel Load
H	H	H	H	X	X	Hold
H	H	H	X	H	X	Hold
H	H	H	L	L	H	Count Up
H	H	H	L	L	L	Count Down

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

FIGURE 1: Multistage Counter with Ripple Carry

TL/F/9565-6
FIGURE 2: Multistage Counter with Lookahead Carry

Absolute Maximum Ratings (Note 1)

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
V_{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{IOL}^{(m A)}$
Note 1: Absolute maximum ratings are value be damaged or have its useful life impair these conditions is not implied.	beyond which the device may d. Functional operation under
Note 2: Either voltage limit or current limit	ufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	74F			Units	Vcc	Conditions
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} \mathrm{5} \mathrm{\%} \mathrm{~V} \mathrm{CC}$ $74 \mathrm{~F} \mathrm{5} \mathrm{\%} \mathrm{~V} \mathrm{CC}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
V_{OL}	Output LOW $74 \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{~V} \mathrm{VCC}$ Voltage $74 \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{VCC}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}) \\ & \mathrm{IOL}=24 \mathrm{~mA}\left(\mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
I_{H}	Input HIGH 74F Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current 74F Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
${ }^{\text {I CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\overline{T C}, \overline{\mathrm{CC}}, \mathrm{O}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {ID }}$	$\begin{aligned} & \text { Input Leakage } \\ & \text { Test } \end{aligned}$	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current $\quad 74 \mathrm{~F}$			3.75	$\mu \mathrm{A}$	0.0	$\begin{aligned} & \mathrm{V}_{\text {IOD }}=150 \mathrm{mV} \\ & \text { All Other Pins Grounded } \end{aligned}$
IIL	Input LOW Current			$\begin{aligned} & -0.6 \\ & -1.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Max Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{P}_{\mathrm{n}}, \overline{\mathrm{CEP}}, \mathrm{CP}, \mathrm{U} / \overline{\mathrm{D}}, \overline{\mathrm{OE}}, \overline{\mathrm{MR}}, \overline{\mathrm{SR}}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{PE}}, \overline{\mathrm{CET}}) \end{aligned}$

DC Electrical Characteristic (Continued)							
Symbol	Parameter	74F		Units	V_{cc}	Conditions	
		Min	Typ Max				
$\mathrm{l}_{\mathrm{OZH}}$	Output Leakage Current		50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{O}_{\mathrm{n}}\right)$	
IOZL	Output Leakage Current		-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{O}_{\mathrm{n}}\right)$	
los	Output Short-Circuit Current	-60	-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{\mathrm{n}}\right)$	
Izz	Bus Drainage Test		500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}\left(\mathrm{O}_{\mathrm{n}}\right)$	
ICCH	Power Supply Current		$45 \quad 67$	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$	
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current		$45 \quad 67$	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW	
ICCZ	Power Supply Current		$45 \quad 67$	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$	
AC Electrical Characteristics							
Symbol	Parameter	74F			74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum Clock Frequency	90			70		MHz
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay CP to O_{n} ($\overline{\mathrm{PE}}$ HIGH or LOW)	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 11.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 13.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to TC	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CET to TC	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 6.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 7.0 \\ 12.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay U/ $\overline{\mathrm{D}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{C C}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ to $\overline{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} 6.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 7.5 \\ 12.5 \\ \hline \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to O_{n}	5.0	10.0	13.0	5.0	14.5	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 6.0 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.0 \\ 7.0 \\ \hline \end{array}$	

AC Operating Requirements

Symbol	Parameter					Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$		
		Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $P_{\mathrm{n}} \text { to } \mathrm{CP}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$		ns
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{gathered} 0 \\ 0.5 \end{gathered}$		$\begin{gathered} 0 \\ 0.5 \end{gathered}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW PE to CP	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\text { PE to CP }}$	$\begin{gathered} 0.0 \\ 0 \\ \hline \end{gathered}$		$\begin{gathered} 1.0 \\ 0 \\ \hline \end{gathered}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW U/D to CP	$\begin{gathered} 11.0 \\ 7.0 \\ \hline \end{gathered}$		$\begin{gathered} 12.5 \\ 8.5 \\ \hline \end{gathered}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW U/D to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{gathered} 10.5 \\ 8.5 \\ \hline \end{gathered}$		$\begin{gathered} 11.0 \\ 9.5 \end{gathered}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width, HIGH or LOW	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 8.0 \end{aligned}$		ns
$t_{w}(L)$	$\overline{\text { MR Pulse Width, LOW }}$	4.5		6.0		ns
$t_{\text {rec }}$	$\overline{\mathrm{MR}}$ Recovery Time	6.0		8.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

20-Lead ($0.300^{\prime \prime}$ Wide) Molded Dual-In-Line Package (P) NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

