74F537
1-of-10 Decoder with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F537 is one-of-ten decoder/demultiplexer with four active HIGH BCD inputs and ten mutually exclusive outputs. A polarity control input determines whether the outputs are active LOW or active HIGH. The 'F537 has TRI-STATE outputs, and a HIGH signal on the Output Enable ($\overline{\mathrm{OE}}$) input forces all outputs to the high impedance state. Two input
enables, active $\mathrm{HIGH} \mathrm{E}_{2}$ and active LOW \bar{E}_{1}, are available for demultiplexing data to the selected output in either noninverted or inverted form. Input codes greater than BCD nine cause all outputs to go to the inactive state (i.e., same polarity as the P input).

Commercial	Package Number	Package Description
74F537PC	N20A	20-Lead (0.300" Wide) Molded Dual-In-Line
74F537SC (Note 1)	M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
74F537SJ (Note 1)	M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ

Note 1: Devices also available in $13^{\prime \prime}$ reel. Use suffix = SCX and SJX

Logic Symbols

IEEE/IEC

Connection Diagram
Pin Assignment for DIP and SOIC

Unit Loading/Fan Out

Pin Names	Description	$\mathbf{7 4 F}$	
		U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $I_{\mathbf{O H}} / I_{\mathbf{O L}}$
	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
E_{1}	Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
E_{2}	Enable Input (Active HIGH)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
OE	Output Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
P	Polarity Control Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{9}$	TRI-STATE Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

[^0]Truth Table

Function	Inputs									Outputs							
	$\overline{O E}$	\bar{E}_{1}	E_{2}	A_{3}	A_{2}	A_{1}	A_{0}	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	O_{9}
High Impedance	H	X	X	X	X	X	X	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
Disable	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$			Outputs Equal P Input							
Active HIGH Output $(\mathrm{P}=\mathrm{L})$	L	L	H	L	L	L	L	H	L	L	L	L	L	L	L	L	L
	L	L	H	L	L	L	H	L	H	L	L	L	L	L	L	L	L
	L	L	H	L	L	H	L	L	L	H	L	L	L	L	L	L	L
	L	L	H	L	L	H	H	L	L	L	H	L	L	L	L	L	L
	L	L	H	L	H	L	L	L	L	L	L	H	L	L	L	L	L
	L	L	H	L	H	L	H	L	L	L	L	L	H	L	L	L	L
	L	L	H	L	H	H	L	L	L	L	L	L	L	H	L	L	L
	L	L	H	L	H	H	H	L	L	L	L	L	L	L	H	L	L
	L	L	H	H	L	L	L	L	L	L	L	L	L	L	L	H	L
	L	L	H	H	L	L	H	L	L	L	L	L	L	L	L	L	H
	L	L	H	H	X	H	X	L	L	L	L	L	L	L	L	L	L
	L	L	H	H	H	X	X	L	L	L	L	L	L	L	L	L	L
Active LOW Output$(\mathrm{P}=\mathrm{H})$	L	L	H	L	L	L	L	L	H	H	H	H	H	H	H	H	H
	L	L	H	L	L	L	H	H	L	H	H	H	H	H	H	H	H
	L	L	H	L	L	H	L	H	H	L	H	H	H	H	H	H	H
	L	L	H	L	L	H	H	H	H	H	L	H	H	H	H	H	H
	L	L	H	L	H	L	L	H	H	H	H	L	H	H	H	H	H
	L	L	H	L	H	L	H	H	H	H	H	H	L	H	H	H	H
	L	L	H	L	H	H	L	H	H	H	H	H	H	L	H	H	H
	L	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H
	L	L	H	H	L	L	L	H	H	H	H	H	H	H	H	L	H
	L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	L
	L	L	H	H	X	H	X	H	H	H	H	H	H	H	H	H	H
	L	L	H	H	H	X	X	H	H	H	H	H	H	H	H	H	H

H = HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias Plastic	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \mathrm{C} \\ & -55^{\circ} \mathrm{t} \text { o }+150^{\circ} \end{aligned}$
$V_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	twice the rated lol (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.	
Note 2: Either voltage limit or curren	to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$			0.5	V	Min	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
I_{H}	Input HIGH Current	74F			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	74F			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current	74F			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
I_{IL}	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
l OZH	Output Leakage Cu				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
IOZL	Output Leakage Cu				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit	urrent	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Curre				56	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCZ	Power Supply Curre			44	66	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics

Symbol	Parameter	74F			74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{A}_{\mathrm{n}} \text { to } \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 16.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{1} to O_{n}	$\begin{aligned} & 5.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.5 \\ 6.5 \\ \hline \end{array}$	$\begin{gathered} 14.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{array}{r} 5.0 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 15.5 \\ & 10.0 \\ & \hline \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay E_{2} to O_{n}	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	$\begin{array}{r} 16.0 \\ 14.0 \\ \hline \end{array}$	$\begin{array}{r} 6.0 \\ 5.0 \\ \hline \end{array}$	$\begin{aligned} & 17.0 \\ & 15.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay P to O_{n}	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.0 \\ & 17.0 \\ & \hline \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

20-Lead (0.300 " Wide) Molded Dual-In-Line Package (P)
NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

[^0]: TRI-STATE is a registered trademark of National Semiconductor Corporation.

