74F524

8-Bit Registered Comparator

General Description

The 'F524 is an 8-bit bidirectional register with parallel input and output plus serial input and output progressing from LSB to MSB. All data inputs, serial and parallel, are loaded by the rising edge of the input clock. The device functions are controlled by two control lines $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$ to execute shift, load, hold and read out.
An 8-bit comparator examines the data stored in the registers and on the data bus. Three true-HIGH, open-collector outputs representing 'register equal to bus', 'register greater than bus' and 'register less than bus' are provided. These outputs can be disabled to the OFF state by the use of Status Enable (SE). A mode control has also been provided
to allow twos complement as well as magnitude compare. Linking inputs are provided for expansion to longer words.

Features

- 8-Bit bidirectional register with bus-oriented input-output
- Independent serial input-output to register
- Register bus comparator with 'equal to', 'greater than' and 'less than' outputs
- Cascadable in groups of eight bits
- Open-collector comparator outputs for AND-wired expansion
- Twos complement or magnitude compare

Commercial	Package Number	Package Description
74F524PC	N20A	20-Lead (0.300" Wide) Molded Dual-In-Line
74F524SC (Note 1)	M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC

Note 1: Devices also available in $13^{\prime \prime}$ reel. Use suffix = SCX.

Logic Symbols

TL/F/9546-4

Connection Diagram

Pin Assignment for DIP and SOIC

Unit Loading/Fan Out

Pin Names	Description	74F	
		U.L. HIGH/LOW	$\begin{gathered} \text { Input } \mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}} \\ \text { Output } \mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}} \end{gathered}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
C / SI	Status Priority or Serial Data Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { SE }}$	Status Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
M	Compare Mode Select Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Parallel Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	TRI-STATE ${ }^{\text {® }}$ Parallel Data Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
C/SO	Status Priority or Serial Data Output	50/33.3	-1 mA/20 mA
LT	Register Less Than Bus Output	OC*/33.3	*/20 mA
EQ	Register Equal Bus Output	OC*/33.3	*/20 mA
GT	Register Greater Than Bus Output	OC*/33.3	*/20 mA

*OC $=$ Open Collector

Functional Description

The 'F524 contains eight D-type flip-flops connected as a shift register with provision for either parallel or serial loading. Parallel data may be read from or loaded into the registers via the data bus $\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$. Serial data is entered from the C/SI input and may be shifted into the register and out through the C/SO output. Both parallel and serial data entry occur on the rising edge of the input clock (CP). The operation of the shift register is controlled by two signals S_{0} and S_{1} according to the Select Truth Table. The TRI-STATE parallel output buffers are enabled only in the Read mode.
One port of an 8 -bit comparator is attached to the data bus while the other port is tied to the outputs of the internal register. Three active-OFF, open-collector outputs indicate whether the contents held in the shift register are 'greater than', (GT), 'less than' (LT), or 'equal to' (EQ) the data on the input bus. A HIGH signal on the Status Enable ($\overline{\mathrm{SE}}$) input disables these outputs to the OFF state. A mode control input (M) allows selection between a straightforward magnitude compare or a comparison between twos complement numbers.
For 'greater than' or 'less than' detection, the C/SI input must be held HIGH, as indicated in the Status Truth Table. The internal logic is arranged such that a LOW signal on the C/SI input disables the 'greater than' and 'less than' outputs. The C/SO output will be forced HIGH if the 'equal to' status condition exists, otherwise C/SO will be held LOW. These facilities enable the 'F524 to be cascaded for word length greater than eight bits.
Word length expansion (in groups of eight bits) can be achieved by connecting the C / SO output of the more significant byte to the C / SI input of the next less significant byte and also to its own $\overline{\text { SE }}$ input (see Figure 1). The C/SI input of the most significant device is held HIGH while the SE input of the least significant device is held LOW. The corresponding status outputs are AND-wired together. In the case of twos complement number compare, only the Mode input to the most significant device should be HIGH. The Mode inputs to all other cascaded devices are held LOW.

Suppose that an inequality condition is detected in the most significant device. Assuming that the byte stored in the register is greater than the byte on the data bus, the EQ and LT outputs will be pulled LOW and the GT output will float HIGH. Also the C/SO output of the most significant device will be forced LOW, disabling the subsequent devices but enabling its own status outputs. The correct status condition is thus indicated. The same applies if the registered byte is less than the data byte, only in this case the EQ and GT outputs go LOW and LT output floats HIGH.
If an equality condition is detected in the most significant device, its C/SO output is forced HIGH. This enables the next less significant device and also disables its own status outputs. In this way, the status output priority is handed down to the next less significant device which now effectively becomes the most significant byte. The worst case propagation delay for a compare operation involving ' n ' cascaded 'F524s will be when an equality condition is detected in all but the least significant byte. In this case, the status priority has to ripple all the way down the chain before the correct status output is established. Typically, this will take $35+6(n-2) n s$.

Select Truth Table		
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	Operation
L	L	Hold—Retains Data in Shift Register Read—Read Contents in Register onto Data Bus, Data Remains in Register Unaffected by Clock
H	H	Shift—Allows Serial Shifting on Next Rising Clock Edge
H	H	Load—Load Data on Bus into Register

Functional Description (Continued)

Number Representation Select Table	
\mathbf{M}	Operation
L	Magnitude Compare
H	Twos Complement Compare

Status Truth Table (Hold Mode)						
Inputs			Outputs			
$\overline{\mathbf{S E}}$	C/SI	Data Comparison	EQ	GT	LT	C/SO
H	H	X	H	H	H	1
H	L	X	H	H	H	L
L	L	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}>\mathrm{l} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	L	H	H	L
L	L	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}=1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	H	H	H	L
L	L	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}<\mathrm{l} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	L	H	H	L
L	H	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}>\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	L	H	L	L
L	H	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}=1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	H	L	L	H
L	H	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}<\mathrm{l} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	L	L	H	L

$1=$ HIGH if data are equal, otherwise LOW
$H=$ HIGH Voltage Level
L = LOW Votlage Level
$\mathrm{X}=$ Immaterial

TL/F/9546-6
FIGURE 1. Cascading 'F524s for Comparing Longer Words

```
Block Diagram
```


Notes:

1. TRI-STATE Output
2. Open-Collector Output

Absolute Maximum Ratings (Note 1)	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Plastic	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V_{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	wice the rated $\mathrm{lOL}_{\text {(}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device maybe damaged or have its useful life impaired. Functional operation underthese conditions is not implied.	
Note 2: Either voltage limit or current limit is	ifficient to protect inputs.

Recommended Operating Conditions
 Free Air Ambient Temperature Commercial
 Supply Voltage Commercial
 +4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	74F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\mathrm{I} / \mathrm{O}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{LT}, \mathrm{GT}, \mathrm{EQ}, \mathrm{C} / \mathrm{SO}) \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current	74F			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	74F			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current	74F			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(1 / \mathrm{O}_{\mathrm{n}}, \mathrm{C} / \mathrm{SO}\right)$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\mathrm{IOD}}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{IIH}+\mathrm{I}_{\text {OZH }}$	Output Leakage Cur				70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 / \mathrm{O}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Cur				-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 / \mathrm{O}}=0.5 \mathrm{~V}$
los	Output Short-Circuit	urrent	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

DC Electrical Characteristics (Continued)							
Symbol	Parameter		74F		Units	V_{Cc}	Conditions
			Min Typ	Max			
IOHC	Open Collector, Output OFF Leakage Test			250	$\mu \mathrm{A}$	Min	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICCH	Power Supply Current		128	180	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current		128	180	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Current		128	180	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z
AC Electrical Characteristics							
Symbol	Parameter	74F			74F		Units
		$\begin{gathered} \mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Shift Frequency	50	75		50		MHz
$\begin{aligned} & \hline \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay I/On to EQ	$\begin{aligned} & 9.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 16.5 \\ 9.5 \\ \hline \end{gathered}$	$\begin{array}{r} 20.0 \\ 12.0 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.0 \\ & 13.0 \\ & \hline \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay I/On to GT	$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 20.0 \\ & 17.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay I/On to LT	$\begin{aligned} & 7.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.5 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.0 \\ 14.0 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.0 \\ & \hline \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay I/On to C/SO	$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.2 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.5 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.5 \\ 17.0 \\ \hline \end{array}$	ns
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to EQ	$\begin{gathered} 10.0 \\ 4.0 \\ \hline \end{gathered}$	$\begin{gathered} 20.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{array}{r} 25.0 \\ 16.5 \\ \hline \end{array}$	$\begin{gathered} 10.0 \\ 4.0 \\ \hline \end{gathered}$	$\begin{aligned} & 26.0 \\ & 17.5 \\ & \hline \end{aligned}$	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to GT	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 16.5 \\ & 17.0 \end{aligned}$	$\begin{array}{r} 21.0 \\ 22.0 \\ \hline \end{array}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{array}{r} 22.0 \\ 23.0 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to LT	$\begin{aligned} & 9.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 17.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 26.0 \\ & 18.0 \\ & \hline \end{aligned}$	
${ }_{\text {tPLH }}$	Propagation Delay CP to C/SO (Load)	8.5	16.5	21.0	8.5	22.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to C/SO (Serial Shift)	$\begin{aligned} & 5.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{array}{r} 13.0 \\ 11.5 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.0 \\ 12.5 \\ \hline \end{array}$	
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay C/SI to GT	$\begin{aligned} & 9.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 15.0 \\ 6.5 \\ \hline \end{gathered}$	$\begin{gathered} 19.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 9.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 20.0 \\ 9.5 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay C/SI to LT	$\begin{aligned} & 8.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 15.5 \\ 6.5 \\ \hline \end{gathered}$	$\begin{gathered} 20.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 8.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 21.0 \\ 9.5 \\ \hline \end{gathered}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to C / SO	$\begin{aligned} & 6.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.5 \\ 18.0 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.5 \\ & 19.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\text { SE }}$ to EQ	$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \\ \hline \end{gathered}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\text { SE }}$ to GT	$\begin{aligned} & 6.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 12.5 \\ 6.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 16.0 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 6.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 17.0 \\ 9.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay SE to LT	$\begin{aligned} & 5.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 6.0 \\ \hline \end{gathered}$	$\begin{gathered} 13.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 14.5 \\ 9.0 \\ \hline \end{gathered}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay C/SI to C/SO	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	ns

AC Electrical Characteristics

Symbol	Parameter		74F				Units
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay M to GT	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 175 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 18.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay M to LT	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 17.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 22.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 13.0 \end{aligned}$	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to EQ	$\begin{gathered} 15.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 25.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 19.0 \end{aligned}$	$\begin{gathered} 15.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 35.0 \\ & 20.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to GT	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 23.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 24.0 \end{aligned}$	
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to LT	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 24.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.0 \\ & 25.0 \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL }^{2} \\ & \hline \end{aligned}$	Output Enable Time $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time S_{0}, S_{1} to I / O_{n}	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.6 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$		

AC Operating Requirements

Symbol	Parameter					Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$		
		Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}} \text { to } \mathrm{CP}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW C / SI to CP	$\begin{aligned} & \hline 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW C/SI to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Clock Pulse Width, HIGH	5.0		5.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

