

Note 1: Devices also available in $13^{\prime \prime}$ reel. Use suffix $=$ SCX and SJX.
Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Connection Diagrams

TRI-STATE ${ }^{\text {® }}$ is a registered trademark of National Semiconductor Corporation.

Functional Description

The 'F398 and 'F399 are high-speed quad 2-port registers. They select four bits of data from either of two sources (Ports) under control of a common Select input (S). The selected data is transferred to a 4-bit output register synchronous with the LOW-to-HIGH transition of the Clock input (CP). The 4-bit D-type output register is fully edge-triggered. The Data inputs ($l_{0 x}, l_{1 x}$) and Select input (S) must be stable only a setup time prior to and hold time after the LOW-to-HIGH transition of the Clock input for predictable operation. The ' $F 398$ has both Q and \bar{Q} outputs.

Inputs					
			Outputs		
\mathbf{s}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	\mathbf{Q}	$\overline{\mathbf{Q}}^{*}$	
I	I	X	L	H	
I	h	X	H	L	
h	X	I	L	H	
h	X	h	H	L	

H = HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{h}=$ HIGH Voltage Level one setup time prior to the LOW-to-HIGH clock transition
I = LOW Voltage Level one setup time prior to the LOW-to-HIGH clock transition
$\mathrm{X}=$ Immaterial
*'F398 only

Logic Diagram

*'F398 Only
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Input Clock Frequency	100	140		80		100		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to Q or $\overline{\mathrm{Q}}$	$\begin{gathered} 3.0^{*} \\ 3.0 \end{gathered}$	$\begin{aligned} & 5.7 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	3.0 3.0	$\begin{gathered} 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \end{gathered}$	ns

*'F398 3.3 ns
AC Operating Requirements

Symbol	Parameter	74F		54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathbf{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW I_{n} to CP	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW I_{n} to CP	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW S to CP ('F398)	$\begin{array}{r} 7.5 \\ 7.5 \\ \hline \end{array}$		$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW S to CP ('F399)	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW S to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$				ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

