Commercial	Package Number	Package Description
74F352PC	N16E	16 Lead (0.300" Wide) Molded Dual-in-Line
74F352SJ (Note 1)	M16D	16 Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline, JEDEC

Note 1: Devices also available in $13^{\prime \prime}$ reel. Use suffix $=$ SJX

Connection Diagram
Pin Assignment for DIP and SOIC

TL/F/9519-1

Features

- Inverted version of 'F153
- Separate enables for each multiplexer
- Input clamp diode limits high speed termination effects section. It can select two bits of data from four sources. The
two buffered outputs present data in the inverted (complementary) form. The 'F352 is the functional equivalent of the 'F153 except with inverted outputs.

Unit Loading/Fan Out

Pin Names	Description	74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\mathrm{I}_{0-1} \mathrm{I}_{3 \mathrm{a}}$	Side A Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{0-1} \mathrm{l}_{3 \mathrm{~b}}$	Side B Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}-\mathrm{S}_{1}$	Common Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{E}_{\text {a }}$	Side A Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{E}_{\text {b }}$	Side B Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{Z}_{\mathrm{a}}, \overline{\mathrm{Z}}_{\mathrm{b}}$	Multiplexer Outputs (Inverted)	50/33.3	-1 mA/20 mA

[^0]
Functional Description

The 'F352 is a dual 4-input multiplexer. It selects two bits of data from up to four sources under the control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4 -input multiplexer circuits have individual active LOW Enables (\bar{E}_{a}, \bar{E}_{b}) which can be used to strobe the outputs independently. When the Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) are HIGH, the corresponding outputs ($\overline{\mathrm{Z}}_{\mathrm{a}}, \overline{\mathrm{Z}}_{\mathrm{b}}$) are forced HIGH

The logic equations for the outputs are shown below:

$$
\begin{array}{r}
\overline{\mathrm{Z}}_{\mathrm{a}}=\overline{\mathrm{E}}_{\mathrm{a}} \bullet\left(\mathrm{I}_{0 \mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\right. \\
\left.\mathrm{I}_{2 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}+\mathrm{I}_{3 \mathrm{a}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right) \\
\overline{\mathrm{Z}}_{\mathrm{b}}=\overline{\mathrm{E}}_{\mathrm{b}} \bullet\left(\mathrm{I}_{0 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\right. \\
\left.\mathrm{I}_{2 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}+\mathrm{I}_{3 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)
\end{array}
$$

Truth Table

Select Inputs		Inputs (a or b)					Output
S_{0}	S_{1}	$\overline{\mathbf{E}}$	I_{0}	I_{1}	I_{2}	I_{3}	$\overline{\mathbf{Z}}$
X	X	H	X	X	X	X	H
L	L	L	L	X	X	X	H
L	L	L	H	X	X	X	L
H	L	L	X	L	X	X	H
H	L	L	X	H	X	X	L
L	H	L	X	X	L	X	H
L	H	L	X	X	H	X	L
H	H	L	X	X	X	L	H
H	H	L	X	X	X	H	L

H $=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial

Logic Diagram

Absolute Maximum Ratings (Note 1)	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias Plastic	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
$V_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE® Output	$\begin{gathered} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{gathered}$
Current Applied to Output in LOW State (Max)	twice the rated lol (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.	
Note 2: Either voltage limit or current limit is	sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter	74F			Units	V_{cc}	Conditions
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $74 \mathrm{~F} 5 \% \mathrm{VCC}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage			0.5	V	Min	$\mathrm{l} \mathrm{OL}=20 \mathrm{~mA}$
I_{H}	Input HIGH 74F Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current 74F Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current 74F			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage $\quad 74 F$ Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current \quad 74F			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
I_{IL}	Input LOW Current			-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current		9.3	14	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current		13.3	20	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics

Symbol	Parameter	74F			74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to \bar{Z}_{n}	$\begin{aligned} & 4.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.0 \\ 6.5 \\ \hline \end{array}$	$\begin{gathered} 11.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay \bar{E}_{n} to \bar{Z}_{n}	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay I_{n} to \bar{Z}_{n}	$\begin{aligned} & 2.0 \\ & 1.3 \end{aligned}$	5.2 2.5	7.0 4.0	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:
 SJ = Small Outline SOIC EIAJ

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

[^0]: TRI-STATE® is a registered trademark of National Semiconductor Corporation.

