General Description The 'F350 is a specialized multiplexer that accepts a 4-bit word and shifts it $0,1,2$ or 3 places, as determined by two Select $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$ inputs. For expansion to longer words, three linking inputs are provided for lower-order bits; thus two packages can shift an 8 -bit word, four packages a 16 -bit word, etc. Shifting by more than three places is accomplished by paralleling the TRI-STATE outputs of different packages and using the Output Enable (OE) inputs as a third Select level. With appropriate interconnections, the 'F350 can perform zero-backfill, sign-extend or end-around (barrel) shift functions. Features - Linking inputs for word expansion - TRI-STATE outputs for extending s			August 1995
Commercial	Package Number	Package Description	
74F350PC	N16E	16-Lead (0.300" Wide) Molded Dual-In-Line	
74F350SC (Note 1)	M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC	
74F350SJ (Note 1)	M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ	

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Select Inputs	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
I_{-3-13}	Data Inputs	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
OE	Output Enable Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$	TRI-STATE Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F350 is operationally equivalent to a 4-input multiplexer with the inputs connected so that the select code causes successive one-bit shifts of the data word. This internal connection makes it possible to perform shifts of $0,1,2$ or 3 places on words of any length.
A 4-bit data word is introduced at the I_{n} inputs and is shifted according to the code applied to the select inputs $\mathrm{S}_{0}, \mathrm{~S}_{1}$. Outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ are TRI-STATE, controlled by an active LOW output enable ($\overline{\mathrm{OE}}$). When $\overline{\mathrm{OE}}$ is LOW, data outputs will follow selected data inputs; when HIGH, the data outputs will be forced to the high impedance state. This feature allows shifters to be cascaded on the same output lines or
to a common bus. The shift function can be logical, with zeros pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop.

Logic Equations

$$
\begin{aligned}
& \mathrm{O}_{0}=\overline{\mathrm{S}}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{0}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} I_{-1}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} \mathrm{I}_{-2}+\mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{I}_{-3} \\
& O_{1}=\bar{S}_{0} \bar{S}_{1} I_{1}+S_{0} \bar{S}_{1} I_{0}+\bar{S}_{0} S_{1} I_{-1}+S_{0} S_{1} I_{-2} \\
& \mathrm{O}_{2}=\overline{\mathrm{S}}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{2}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{1}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} \mathrm{I}_{0}+\mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{I}_{-1} \\
& \mathrm{O}_{3}=\overline{\mathrm{S}}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{3}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{2}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} 1_{1}+\mathrm{S}_{0} \mathrm{~S}_{1} I_{0}
\end{aligned}
$$

Truth Table

Inputs			Outputs			
$\overline{\mathbf{O E}}$	$\mathbf{S}_{\boldsymbol{1}}$	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{O}_{\mathbf{0}}$	$\mathbf{O}_{\mathbf{1}}$	$\mathbf{O}_{\mathbf{2}}$	$\mathbf{O}_{\mathbf{3}}$
H	X	X	Z	Z	Z	Z
L	L	L	I_{0}	I_{1}	I_{2}	I_{3}
L	L	H	I_{-1}	I_{0}	I_{1}	I_{2}
L	H	L	I_{-2}	I_{-1}	I_{0}	I_{1}
L	H	H	I_{-3}	I_{-2}	I_{-1}	I_{0}

H $=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
Z $=$ High Impedance

Logic Diagram

TL/F/9518-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Function Table

$\mathbf{S}_{\boldsymbol{1}}$	$\mathbf{S}_{\mathbf{0}}$	Shift Function
L	L	No Shift
L	H	Shift 1 Place
H	L	Shift 2 Places
H	H	Shift 3 Places

Absolute Maximum Ratings (Note 1)

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias Plastic
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
e damaged or have its useful life impared. Function he device may these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC} -0.5 V to +5.5 V

Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$

Recommended Operating Conditions

Free Air Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
\quad Commercial	
Supply Voltage Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter	74F			Units	$\mathrm{V}_{\mathbf{c c}}$	Conditions
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage $74 \mathrm{~F} 10 \% \mathrm{~V}_{\text {CC }}$			0.5	V	Min	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current 74F			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	$\begin{aligned} & \text { Input HIGH Current } \quad 74 F \\ & \text { Breakdown Test } \end{aligned}$			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
${ }^{\text {ICEX }}$	Output HIGH Leakage Current $74 F$			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
IOD	Output Leakage Circuit Current 74F			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current			-1.2	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
l OzH	Output Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current			-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
ICCH	Power Supply Current		34	42	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current		40	57	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Current		40	57	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics

Symbol	Parameter		74F				Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay I_{n} to O_{n}	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{\mathrm{n}} \text { to } \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.8 \\ 6.5 \\ \hline \end{array}$	$\begin{gathered} 10.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

16-Lead (0.150" Wide) Molded Small Outline Package, JEDEC (S)
NS Package Number M16A

16-Lead ($0.300^{\prime \prime}$ Wide) Molded Small Outline Package, EIAJ (SJ)
NS Package Number M16D

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

