National Semiconductor

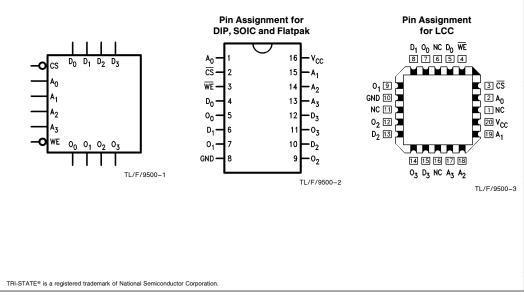
## 54F/74F219 64-Bit Random Access Memory with TRI-STATE® Outputs

### **General Description**

The 'F219 is a high-speed 64-bit RAM organized as a 16-word by 4-bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are TRI-STATE and are in the high-impedance state whenever the Chip Select ( $\overline{CS}$ ) input is HIGH. The outputs are active only in the Read mode. This device is similar to the 'F189 but features non-inverting, rather than inverting, data outputs.

#### **Features**

- TRI-STATE outputs for data bus applications
- Buffered inputs minimize loading
- Address decoding on-chip
- Diode clamped inputs minimize ringing
- Available in SOIC (300 mil only)


| Commercial        | Military          | Package<br>Number | Package Description                               |
|-------------------|-------------------|-------------------|---------------------------------------------------|
| 74F219PC          |                   | N16E              | 16-Lead (0.300" Wide) Molded Dual-In-Line         |
|                   | 54F219DL (Note 2) | J16A              | 16-Lead Ceramic Dual-In-Line                      |
| 74F219SC (Note 1) |                   | M16B              | 16-Lead (0.300" Wide) Molded Small Outline, JEDEC |
| 74F219SJ (Note 1) |                   | M16D              | 16-Lead (0.300" Wide) Molded Small Outline, EIAJ  |
|                   | 54F219FL (Note 2) | W16A              | 16-Lead Cerpack                                   |
|                   | 54F219LL (Note 2) | E20A              | 20-Lead Ceramic Leadless Chip Carrier, Type C     |

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DLQB, FLQB and LLQB.

### Logic Symbol

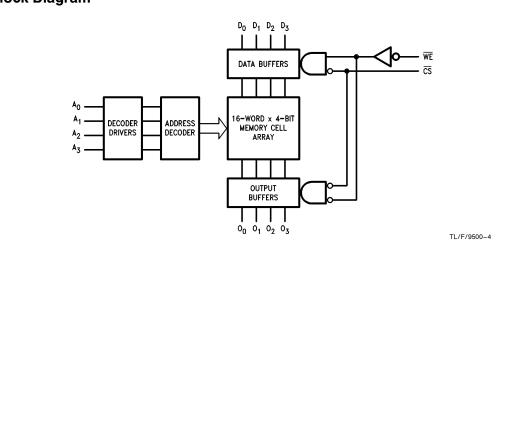
#### **Connection Diagrams**



© 1995 National Semiconductor Corporation TL/F/9500

RRD-B30M105/Printed in U. S. A.

November 1994


|                                                                  |                                 |                  | 54F/74F                                                                           |
|------------------------------------------------------------------|---------------------------------|------------------|-----------------------------------------------------------------------------------|
| Pin Names                                                        | Description                     | U.L.<br>HIGH/LOW | Input I <sub>IH</sub> /I <sub>IL</sub><br>Output I <sub>OH</sub> /I <sub>OL</sub> |
| A <sub>0</sub> -A <sub>3</sub>                                   | Address Inputs                  | 1.0/1.0          | 20 μA/−0.6 mA                                                                     |
| CS                                                               | Chip Select Input (Active LOW)  | 1.0/2.0          | 20 μA/ – 1.2 mA                                                                   |
| WE                                                               | Write Enable Input (Active LOW) | 1.0/1.0          | 20 µA/−0.6 mA                                                                     |
| D <sub>0</sub> -D <sub>3</sub>                                   | Data Inputs                     | 1.0/1.0          | 20 µA/−0.6 mA                                                                     |
| D <sub>0</sub> -D <sub>3</sub><br>O <sub>0</sub> -O <sub>3</sub> | TRI-STATE Data Outputs          | 150/40 (33.3)    | -3 mA/24 mA (20 mA)                                                               |

### Function Table

| Inp | outs | Operation | Condition of Outputs  |  |  |  |  |
|-----|------|-----------|-----------------------|--|--|--|--|
| CS  | WE   | operation | contaition of outputs |  |  |  |  |
| L   | L    | Write     | High Impedance        |  |  |  |  |
| L   | н    | Read      | True Stored Data      |  |  |  |  |
| Н   | Х    | Inhibit   | High Impedance        |  |  |  |  |

 $\begin{array}{l} \mathsf{H} = \mathsf{HIGH} \; \mathsf{Voltage} \; \mathsf{Level} \\ \mathsf{L} = \mathsf{LOW} \; \mathsf{Voltage} \; \mathsf{Level} \\ \mathsf{X} = \mathsf{Immaterial} \end{array}$ 

## **Block Diagram**



## Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| -65°C to +150°C                         |
|-----------------------------------------|
| -55°C to +125°C                         |
| −55°C to +175°C<br>−55°C to +150°C      |
| -0.5V to +7.0V                          |
| -0.5V to $+7.0V$                        |
| -30 mA to $+5.0$ mA                     |
| $-$ 0.5V to V $_{CC}$ $-$ 0.5V to +5.5V |
|                                         |

Current Applied to Output in LOW State (Max)

### twice the rated I<sub>OL</sub> (mA)

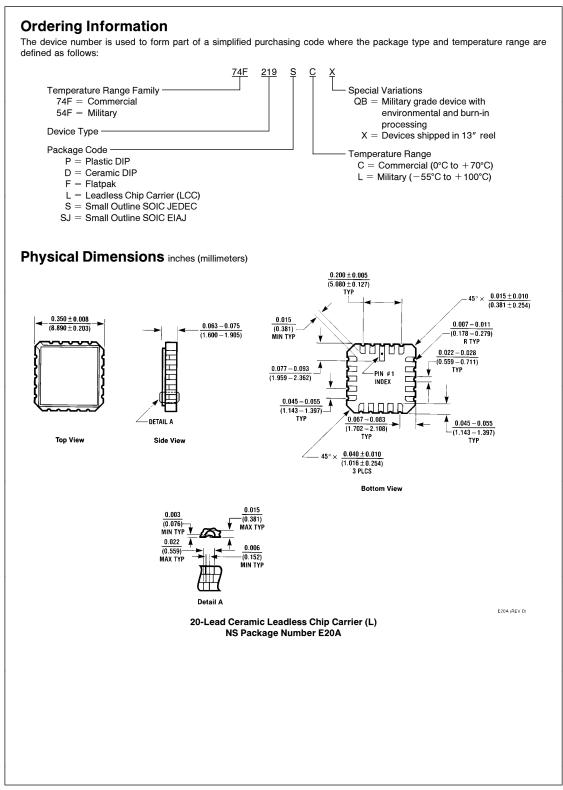
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

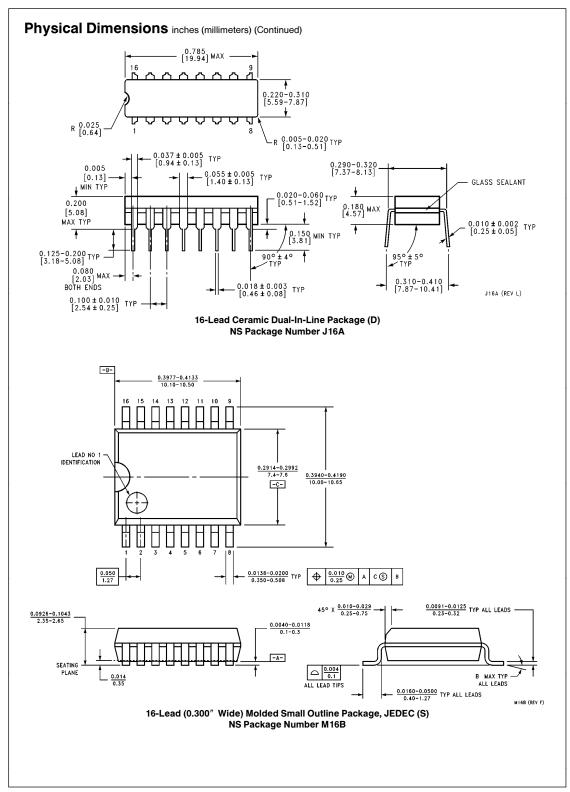
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

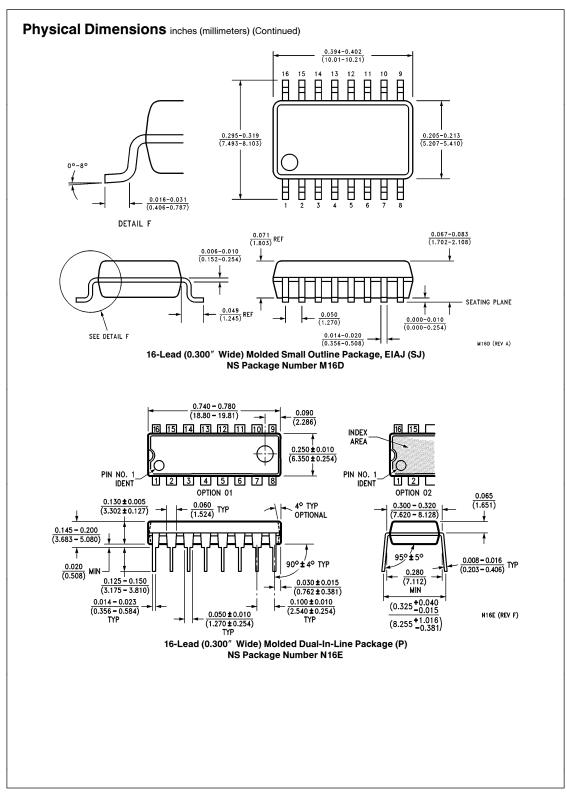
## **Recommended Operating** Conditions

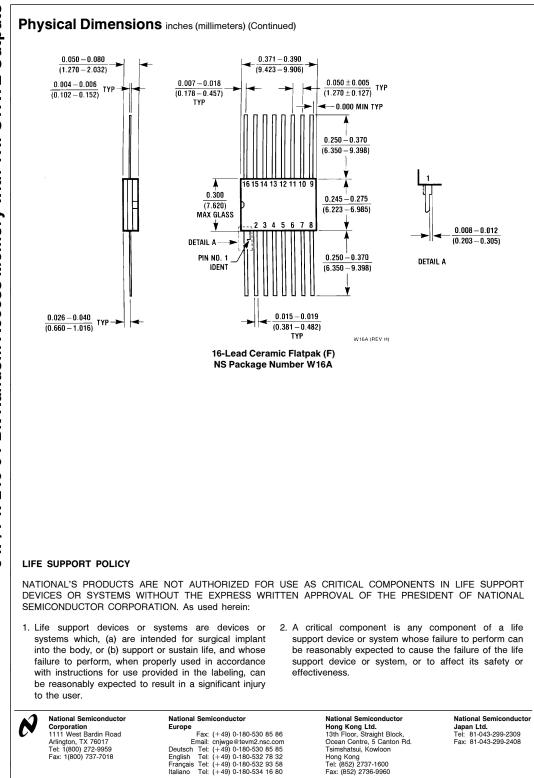
| Free Air Ambient Temperature |                 |
|------------------------------|-----------------|
| Military                     | -55°C to +100°C |
| Commercial                   | 0°C to +70°C    |
| Supply Voltage               |                 |
| Military                     | +4.5V to +5.5V  |
| Commercial                   | +4.5V to +5.5V  |
|                              |                 |

## **DC Electrical Characteristics**


| Symbol           | Parameter                            |                                                                                                                                                              | 54F/74F                                |     |              | Units | v <sub>cc</sub> | Conditions                                                                                                                                                           |  |
|------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|--------------|-------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Symbol           | Farane                               |                                                                                                                                                              | Min                                    | Тур | Max          | Units | VCC             | conditions                                                                                                                                                           |  |
| VIH              | Input HIGH Voltage                   |                                                                                                                                                              | 2.0                                    |     |              | V     |                 | Recognized as a HIGH Signa                                                                                                                                           |  |
| VIL              | Input LOW Voltage                    |                                                                                                                                                              |                                        |     | 0.8          | V     |                 | Recognized as a LOW Signa                                                                                                                                            |  |
| V <sub>CD</sub>  | Input Clamp Diode Vo                 | oltage                                                                                                                                                       |                                        |     | -1.2         | V     | Min             | $I_{IN} = -18 \text{ mA}$                                                                                                                                            |  |
| V <sub>OH</sub>  | Output HIGH<br>Voltage               | 54F 10% V <sub>CC</sub><br>54F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub><br>74F 5% V <sub>CC</sub><br>74F 5% V <sub>CC</sub> | 2.5<br>2.4<br>2.5<br>2.4<br>2.7<br>2.7 |     |              | v     | Min             | $I_{OH} = -1 \text{ mA}$<br>$I_{OH} = -3 \text{ mA}$<br>$I_{OH} = -1 \text{ mA}$<br>$I_{OH} = -3 \text{ mA}$<br>$I_{OH} = -1 \text{ mA}$<br>$I_{OH} = -3 \text{ mA}$ |  |
| V <sub>OL</sub>  | Output LOW<br>Voltage                | 54F 10% V <sub>CC</sub><br>74F 10% V <sub>CC</sub>                                                                                                           |                                        |     | 0.5<br>0.5   | V     | Min             | $I_{OL} = 20 \text{ mA}$<br>$I_{OL} = 24 \text{ mA}$                                                                                                                 |  |
| IIH              | Input HIGH<br>Current                | 54F<br>74F                                                                                                                                                   |                                        |     | 20.0<br>5.0  | μΑ    | Max             | $V_{IN} = 2.7V$                                                                                                                                                      |  |
| I <sub>BVI</sub> | Input HIGH Current<br>Breakdown Test | 54F<br>74F                                                                                                                                                   |                                        |     | 100<br>7.0   | μΑ    | Max             | $V_{IN} = 7.0V$                                                                                                                                                      |  |
| I <sub>CEX</sub> | Output HIGH<br>Leakage Current       | 54F<br>74F                                                                                                                                                   |                                        |     | 250<br>50    | μΑ    | Max             | $V_{OUT} = V_{CC}$                                                                                                                                                   |  |
| V <sub>ID</sub>  | Input Leakage<br>Test                | 74F                                                                                                                                                          | 4.75                                   |     |              | V     | 0.0             | $I_{ID} = 1.9 \mu A$<br>All Other Pins Grounded                                                                                                                      |  |
| I <sub>OD</sub>  | Output Leakage<br>Circuit Current    | 74F                                                                                                                                                          |                                        |     | 3.75         | μΑ    | 0.0             | V <sub>IOD</sub> = 150 mV<br>All Other Pins Grounded                                                                                                                 |  |
| IIL              | Input LOW<br>Current                 |                                                                                                                                                              |                                        |     | -0.6<br>-1.2 | mA    | Мах             |                                                                                                                                                                      |  |
| I <sub>OZH</sub> | Output Leakage Curre                 | ent                                                                                                                                                          |                                        |     | 50           | μA    | Max             | $V_{OUT} = 2.7V$                                                                                                                                                     |  |
| I <sub>OZL</sub> | Output Leakage Curre                 | ent                                                                                                                                                          |                                        |     | -50          | μΑ    | Max             | $V_{OUT} = 0.5V$                                                                                                                                                     |  |
| I <sub>OS</sub>  | Output Short-Circuit (               | Current                                                                                                                                                      | -60                                    |     | -150         | mA    | Max             | $V_{OUT} = 0V$                                                                                                                                                       |  |
| I <sub>ZZ</sub>  | Bus Drainage Test                    |                                                                                                                                                              |                                        |     | 500          | μA    | 0.0V            | $V_{OUT} = 5.25V$                                                                                                                                                    |  |
| ICC              | Power Supply Curren                  | t                                                                                                                                                            |                                        | 37  | 55           | mA    | Max             |                                                                                                                                                                      |  |


|                                      |                                                                   | $74F \\ T_A = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_L = 50  pF$ |              |              | $54F$ $T_{A} = +100^{\circ}C$ $V_{CC} = Mil$ $C_{L} = 50 \text{ pF}$ |              | $74F$ $T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$ |              | Units |
|--------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|--------------|--------------|----------------------------------------------------------------------|--------------|-----------------------------------------------------|--------------|-------|
| Symbol                               | Parameter                                                         |                                                               |              |              |                                                                      |              |                                                     |              |       |
|                                      |                                                                   | Min                                                           | Тур          | Max          | Min                                                                  | Max          | Min                                                 | Мах          |       |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Access Time, HIGH or LOW $A_n$ to $O_n$                           | 10.0<br>8.0                                                   | 18.5<br>13.5 | 26.0<br>19.0 | 9.0<br>8.0                                                           | 32.0<br>23.0 | 10.0<br>8.0                                         | 27.0<br>20.0 | ns    |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Access Time, HIGH or LOW $\overline{\text{CS}}$ to O <sub>n</sub> | 3.5<br>5.0                                                    | 6.0<br>9.0   | 8.5<br>13.0  | 3.5<br>5.0                                                           | 10.5<br>15.0 | 3.5<br>5.0                                          | 9.5<br>14.0  | ns    |
| t <sub>PHZ</sub><br>t <sub>PLZ</sub> | Disable Time, HIGH or LOW<br>CS to O <sub>n</sub>                 | 2.0<br>3.0                                                    | 4.0<br>5.5   | 6.0<br>8.0   | 2.0<br>2.5                                                           | 8.0<br>10.0  | 2.0<br>3.0                                          | 7.0<br>9.0   | - 115 |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Write Recovery Time<br>HIGH or LOW, WE to O <sub>n</sub>          | 6.5<br>6.5                                                    | 20.0<br>11.0 | 28.0<br>15.5 | 6.5<br>6.5                                                           | 37.5<br>17.5 | 6.5<br>6.5                                          | 29.0<br>16.5 | ne    |
| t <sub>PHZ</sub><br>t <sub>PLZ</sub> | Disable Time, HIGH or LOW<br>WE to O <sub>n</sub>                 | 4.0<br>5.0                                                    | 7.0<br>9.0   | 10.0<br>13.0 | 3.5<br>5.0                                                           | 12.0<br>15.0 | 4.0<br>5.0                                          | 11.0<br>14.0 | _ ns  |


# AC Operating Requirements


|                                          |                                                 | $74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ |     | 54                                      | F   | $74F$ $T_{A}, V_{CC} = Com$ |     | Units |
|------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----|-----------------------------------------|-----|-----------------------------|-----|-------|
| Symbol                                   | Parameter                                       |                                               |     | T <sub>A</sub> = +<br>V <sub>CC</sub> = |     |                             |     |       |
|                                          |                                                 | Min                                           | Max | Min                                     | Max | Min                         | Max |       |
| t <sub>s</sub> (H)<br>t <sub>s</sub> (L) | Setup Time, HIGH or LOW<br>A <sub>n</sub> to WE | 0                                             |     | 0<br>0                                  |     | 0<br>0                      |     | - ns  |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold Time, HIGH or LOW<br>A <sub>n</sub> to WE  | 2.0<br>2.0                                    |     | 2.0<br>2.0                              |     | 2.0<br>2.0                  |     | 113   |
| t <sub>s</sub> (H)<br>t <sub>s</sub> (L) | Setup Time, HIGH or LOW<br>D <sub>n</sub> to WE | 10.0<br>10.0                                  |     | 11.0<br>11.0                            |     | 10.0<br>10.0                |     | - ns  |
| t <sub>h</sub> (H)<br>t <sub>h</sub> (L) | Hold Time, HIGH or LOW<br>D <sub>n</sub> to WE  | 0<br>0                                        |     | 2.0<br>2.0                              |     | 0<br>0                      |     |       |
| t <sub>s</sub> (L)                       | Setup Time, LOW<br>CS to WE                     | 0                                             |     | 0                                       |     | 0                           |     | - ns  |
| t <sub>h</sub> (L)                       | Hold Time, LOW<br>CS to WE                      | 6.0                                           |     | 7.5                                     |     | 6.0                         |     |       |
| t <sub>w</sub> (L)                       | WE Pulse Width, LOW                             | 6.0                                           |     | 15.0                                    |     | 6.0                         |     | ns    |

4









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.