SN74F161A SYNCHRONOUS 4-BIT BINARY COUNTER

- Internal Look-Ahead Circuitry for Fast Counting
- Carry Output for N-Bit Cascading
- Fully Synchronous Operation for Counting

description

This synchronous, presettable, 4-bit binary counter has internal carry look-ahead circuitry for use in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. However, counting spikes can occur on the ripple-carry (RCO) output. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of CLK.

This counter is fully programmable. That is, it can be preset to any number between 0 and 15. Because presetting is synchronous, a low logic level at the load ($\overline{\mathrm{LOAD}}$) input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of ENP and ENT.
The clear function is asynchronous, and a low logic level at the clear ($\overline{\mathrm{CLR}})$ input sets all four of the flip-flop outputs to low, regardless of the levels of CLK, $\overline{\text { LOAD, ENP, and ENT. }}$
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications, without additional gating. This function is implemented by the ENP and ENT inputs and an RCO output. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. RCO, thus enabled, produces a high-logic-level pulse while the count is $15(\mathrm{HHHH})$. The high-logic-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

The SN74F161A features a fully independent clock circuit. Changes at ENP, ENT, or LOAD that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the setup and hold times.

ORDERING INFORMATION

TA $_{\mathbf{A}}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP - N	Tube	SN74F161AN	SN74F161AN
	SOIC - D	Tube	SN74F161AD	F161A
		Tape and reel	SN74F161ADR	
	SSOP - DB	Tape and reel	SN74F161ADBR	F161A

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN74F161A

SYNCHRONOUS 4-BIT BINARY COUNTER

SDFS056B - MARCH 1987 - REVISED AUGUST 2001
state diagram

logic diagram (positive logic)

logic symbol, each flip-flop

logic diagram, each flip-flop (positive logic)

typical clear, preset, count, and inhibit sequences

The following timing sequence is illustrated below:

1. Clear outputs to zero
2. Preset to binary 12
3. Count to $13,14,15,0,1$, and 2
4. Inhibit

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 3)

		MIN	NOM
V_{CC}	Supply voltage	4.5	5
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	5.5	UNIT
V_{IL}	Low-level input voltage	2	
I_{IK}	Input clamp current		V
I_{OH}	High-level output current	0.8	V
I_{OL}	Low-level output current	-18	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature		-1

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP \ddagger	MAX	UNIT
VIK		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\boldsymbol{I}=-18 \mathrm{~mA}$			-1.2	V
VOH		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-1 \mathrm{~mA}$	2.5	3.4		V
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOH}=-1 \mathrm{~mA}$	2.7			
V_{OL}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=20 \mathrm{~mA}$		0.3	0.5	V
I		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
${ }_{1 / \mathrm{H}}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IIL	ENP, CLK, A, B, C, D	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$			-0.6	mA
	ENT, $\overline{\text { LOAD }}$					-1.2	
	CLR					-0.6	
Ios ${ }^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-60		-150	mA
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			37	55	mA

[^0]timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		MIN	MAX	UNIT
				MIN	MAX			
${ }^{\text {f clock }}$	Clock frequency			0	100	0	90	MHz
t_{w}	Pulse duration	CLK high or low (loading)		5		5		ns
		CLK (counting)	High	4		4		
			Low	6		7		
		$\overline{\text { CLR }}$ low		5		5		
$\mathrm{t}_{\text {su }}$	Setup time	Data before CLK \uparrow	High or low	5		5		ns
		$\overline{\text { LOAD }}$ before CLK \uparrow	High	11		11.5		
			Low	8.5		9.5		
		ENP and ENT before CLK \uparrow	High	11		11.5		
			Low	5		5		
th	Hold time	Data after CLK \uparrow	High or low	2		2		ns
		$\overline{\text { LOAD }}$ after CLK \uparrow	High	2		2		
			Low	0		0		
		ENP and ENT after CLK \uparrow	High or low	0		0		
$\mathrm{t}_{\text {su }}$	Inactive-state setup time, $\overline{\mathrm{CLR}}$ high before CLK $\uparrow \uparrow$			6		6		ns

† Inactive-state setup time also is referred to as recovery time.
switching characteristics (see Note 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{PF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { TO } 5.5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{PF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ \mathrm{~T}_{\mathrm{A}}=\text { MIN TO MAX } \ddagger \\ \hline \end{gathered}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
$f_{\text {max }}$			100	120		90		MHz
tPLH	CLK ($\overline{\text { LOAD }}$ high)	Any Q	2.7	5.1	7.5	2.7	8.5	ns
tPHL			2.7	7.1	10	2.7	11	
tPLH	CLK ($\overline{\text { LOAD }}$ low)	Any Q	3.2	5.6	8.5	3.2	9.5	ns
tPHL			3.2	5.6	8.5	3.2	9.5	
tPLH	CLK	RCO	4.2	9.6	14	4.2	15	ns
tPHL			4.2	9.6	14	4.2	15	
tPLH	ENT	RCO	1.7	4.1	7.5	1.7	8.5	ns
tPHL			1.7	4.1	7.5	1.7	8.5	
tPHL	CLR	Any Q	4.7	8.6	12	4.7	13	ns
		RCO	3.7	7.6	10.5	3.7	11.5	

[^1]NOTE 4: Load circuits and waveforms are shown in Figure 1.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

[^0]: \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

[^1]: \ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

