
MM54C941/MM74C941 Octal Buffers/Line Receivers/ Line Drivers with TRI-STATE® Outputs

General Description

These octal buffers and line drivers are monolithic complementary MOS (CMOS) integrated circuits with TRI-STATE outputs. These outputs have been specially designed to drive highly capacitive loads such as bus-oriented systems. These devices have a fan-out of 6 low power Schottky loads. When V_{CC} = 5V, inputs can accept true TTL high and low logic levels.

- Features
- Wide supply voltage range (3V to 15V)
- Low power consumption
- TTL compatibility (Improved on the inputs)
- High capacitive load
- TRI-STATE outputs
- Input protection
 - 20-pin dual-in-line package
 - High output drive

Connection and Logic Diagrams

MM54C941/MM74C941 Octal Buffers/Line Receivers/Line Drivers with TRI-STATE Outputs

February 1988

© 1995 National Semiconductor Corporation TL/F/5923

RRD-B30M105/Printed in U. S. A.

please c	Aerospace specified device ontact the National Semic stributors for availability and	onductor Sales	Storage Tempe Power Dissipati Dual-In-Line		T _S) -	- 65°C to -	+ 150°C 700 mW	
Voltage at	Any Pin 0.3	3V to V _{CC} + 0.3V	Small Outline	•			500 mW	
Operating Temperature Range (T_A)			Operating V _{CC} Range			3V to 15V		
MM54C941 -		$\begin{array}{llllllllllllllllllllllllllllllllllll$		18V				
			(Soldering, 10				260°C	
Symbol	ectrical Characteris	Conditio		erature range, Min	unless other	wise noted	Units	
MOS TO CN		Containe			• 7 P	max	••••••	
				0.5			V	
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$ $V_{CC} = 10V$		2.5 8.0			V V	
				0.0		0.0		
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$ $V_{CC} = 10V$				0.8 2.0	V V	
Maximu	Logical "1" Output Voltage	$V_{\rm CC} = 5.0V, I_{\rm O} = -$	10 4	4.5		2.0	v	
V _{OUT(1)}	Logical i Output voltage	$V_{CC} = 3.0V, I_0 = -$ $V_{CC} = 10V, I_0 = -$		4.5 9.0			v	
Volution	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = 100$				0.5	v	
V _{OUT(0)}	Logical o Output voltage	$V_{CC} = 10V, I_0 = 10$	'			1.0	v	
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$			0.005	1.0	μA	
	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$		-1.0	-0.005		μΑ	
	Supply Current			1.0	0.05	300	μA	
		$V_{CC} = 15V$ $V_{CC} = 15V, V_{OUT} = 0V \text{ or } 15V$			0.05		,	
	TRI-STATE Leakage	$v_{\rm CC} = 15v, v_{\rm OUT} =$	000150			±10	μA	
MOS/TTL I								
V _{IN(1)}	Logical "1" Input Voltage	54C, $V_{CC} = 4.5V$ 74C, $V_{CC} = 4.75V$		V _{CC} -2.5 V _{CC} -2.5			V V	
				V(() 2.5		0.0	-	
V _{IN(0)}	Logical "0" Input Voltage	54C, $V_{CC} = 4.5V$ 74C, $V_{CC} = 4.75V$				0.8 0.8	V V	
Variation	Logical "1" Output Voltage	$54C, V_{CC} = 4.5V, I_{O}$	450 4	V _{CC} -0.4		0.0	v	
V _{OUT(1)}	Logical i Output voltage	74C, $V_{CC} = 4.75V$, I_0	' '	V _{CC} 0.4 V _{CC} -0.4			v	
		54C, $V_{CC} = 4.5V$, I _O		2.4			v	
		74C, $V_{CC} = 4.75V$, I	$_{\rm O} = -2.2 {\rm mA}$	2.4			V	
V _{OUT(0)}	Logical "0" Output Voltage	54C, V _{CC} = 4.5V, I _O	= 2.2 mA			0.4	V	
		74C, $V_{CC} = 4.75V$, I	_D = 2.2 mA			0.4	V	
UTPUT DRI	VE (See 54C/74C Family Char	acteristics Data Sheet)					
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 5.0V, V_{OUT} = T_A = 25^{\circ}C$	= 0V	-14.0	-30.0		mA	
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 10V, V_{OUT} = T_A = 25^{\circ}C$	0V	-36.0	-70.0		mA	
I _{SINK}	Output Sink Current (N-Channel)	$V_{CC} = 5.0V, V_{OUT} = T_A = 25^{\circ}C$	■ V _{CC}	12.0	20.0		mA	
I _{SINK}	Output Sink Current (N-Channel)	$V_{CC} = 10V, V_{OUT} = T_{A} = 25^{\circ}C$	V _{CC}	48.0	70		mA	

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd1} , t _{pd0}	Propagation Delay	$V_{CC} = 5.0V, C_{L} = 50 pF$		70	140	ns
pe., pe.	(Data IN to OUT)	$V_{CC} = 10V, C_L = 50 pF$		35	70	ns
		$V_{CC} = 5.0V, C_{L} = 150 pF$		90	160	ns
		$V_{CC} = 10V, C_L = 150 pF$		45	90	ns
t _{IH,} t _{OH}	Propagation Delay Output	$R_{L} = 1 k\Omega, C_{L} = 50 pF$				
	Disable to Logic Level (from	$V_{\rm CC} = 5.0 V$		100	200	ns
	High Impedance State) (from a	$V_{CC} = 210V$		55	110	ns
	Logic Level)					
t _{H1,} t _{H0}	Propagation Delay Output	$R_{L} = 1 k\Omega, C_{L} = 50 pF$				
	Disable to Logic Level (from	$V_{CC} = 5.0V$		100	200	ns
	High Impedance State)	$V_{CC} = 10V$		55	110	ns
t _{THL,} t _{TLH}	Transition Time	$V_{CC} = 5.0V, C_{L} = 50 pF$		50	100	ns
		$V_{CC} = 10V, C_{L} = 50 pF$		30	60	ns
		$V_{CC} = 5.0V, C_{L} = 150 pF$		80	160	ns
		$V_{CC} = 10V, C_L = 150 pF$		50	100	ns
C _{PD}	Power Dissipation Capacitance	(Note 3)				
	(Output Enabled per Buffer)			100		pF
	(Output Disabled per Buffer)			10		pF
C _{IN}	Input Capacitance	(Note 2)				
	(Any Input)	$V_{IN} = 0V, f = 1 MHz,$		10		pF
		$T_A = 25^{\circ}C$				
Co	(Output Capacitance)	$V_{IN} = 0V, f = 1 MHz,$				
-0	(Output Disabled)	$T_A = 25^{\circ}C$		10		pF

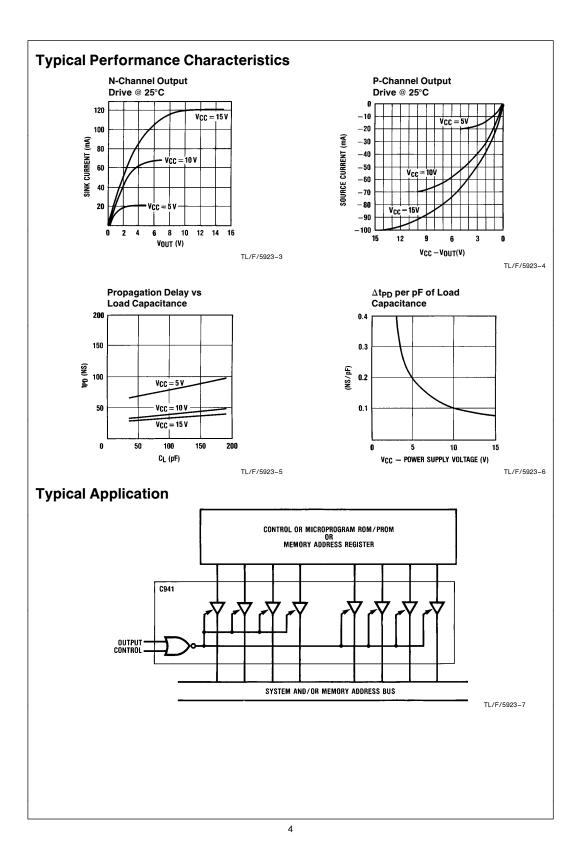
*AC Parameters are guaranteed by DC correlated testing.

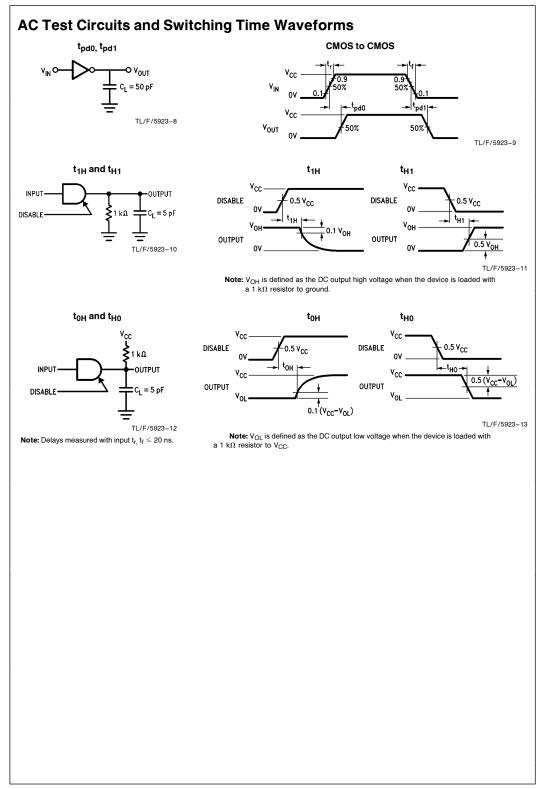
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

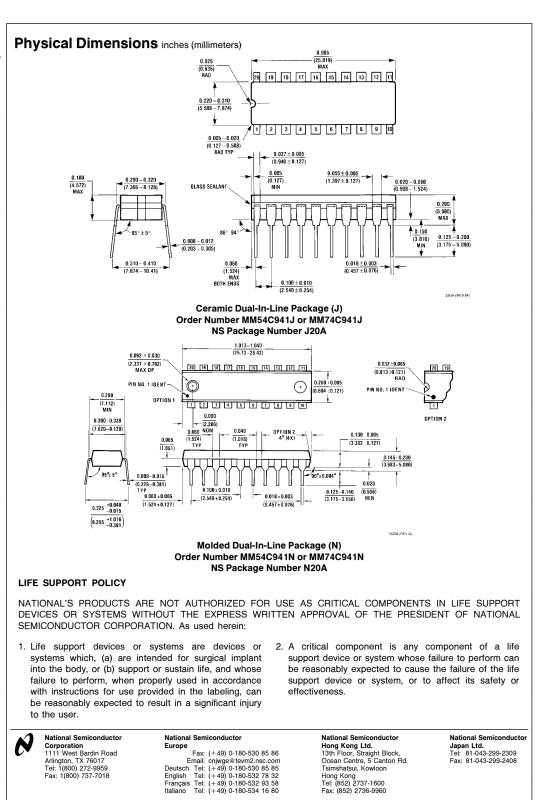
Note 2: Capacitance is guaranteed by periodic testing.

Note 3: CPD determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics Application Note, AN-90.

Truth Table


OD1	OD2	Input	Output
0	0	0	0
0	0	1	1
0	1	Х	Z
1	0	Х	Z
1	1	Х	Z


1 = High


0 = Low

X = Don't Care

Z = TRI-STATE

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.