March 1988

MM74C925, MM74C926, MM74C927, MM74C928 4-Digit Counters with Multiplexed 7-Segment Output Drivers

General Description

These CMOS counters consist of a 4-digit counter, an internal output latch, NPN output sourcing drivers for a 7 -segment display, and an internal multiplexing circuitry with four multiplexing outputs. The multiplexing circuit has its own free-running oscillator, and requires no external clock. The counters advance on negative edge of clock. A high signal on the Reset input will reset the counter to zero, and reset the carry-out low. A low signal on the Latch Enable input will latch the number in the counters into the internal output latches. A high signal on Display Select input will select the number in the counter to be displayed; a low level signal on the Display Select will select the number in the output latch to be displayed.
The MM74C925 is a 4-decade counter and has Latch Enable, Clock and Reset inputs.
The MM74C926 is like the MM74C925 except that it has a display select and a carry-out used for cascading counters. The carry-out signal goes high at 6000, goes back low at 0000.

The MM74C927 is like the MM74C926 except the second most significant digit divides by 6 rather than 10 . Thus, if the clock input frequency is 10 Hz , the display would read tenths of seconds and minutes (i.e., 9:59.9),
The MM74C928 is like the MM74C926 except the most significant digit divides by 2 rather than 10 and the carry-out is
an overflow indicator which is high at 2000, and it goes back low only when the counter is reset. Thus, this is a $31 / 2$-digit counter.

Features

$\begin{array}{lr}\text { - Wide supply voltage range } & 3 \mathrm{~V} \text { to } 6 \mathrm{~V} \\ \text { - Guaranteed noise margin } & 1 \mathrm{~V} \\ \text { - High noise immunity } & 0.45 \mathrm{~V}_{\mathrm{CC}} \text { (typ.) }\end{array}$

- High noise immunity $\quad 0.45 \mathrm{~V}_{\mathrm{CC}}$ (typ.)
$@ \mathrm{~V}_{\mathrm{CC}}-1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Internal multiplexing circuitry

Design Considerations

Segment resistors are desirable to minimize power dissipation and chip heating. The DS75492 serves as a good digit driver when it is desired to drive bright displays. When using this driver with a 5 V supply at room temperature, the display can be driven without segment resistors to full illumination The user must use caution in this mode however, to prevent overheating of the device by using too high a supply voltage or by operating at high ambient temperatures.
The input protection circuitry consists of a series resistor, and a diode to ground. Thus input signals exceeding V_{CC} will not be clamped. This input signal should not be allowed to exceed 15 V

Connection Diagrams

Top View
Order Number MM74C925

TL/F/5919-2
Top View
Order Number MM74C926, MM74C927 or MM74C928

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Any Output Pin	GND -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Voltage at Any Input Pin	$\mathrm{GND}-0.3 \mathrm{~V}$ to +15 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (P_{D}) Refer to $\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}$ vs T_{A} Graph
Operating V_{CC} Range 3 V to 6 V
$V_{C C}$ 6.5 V

Lead Temperature
(Soldering, 10 seconds) $260^{\circ} \mathrm{C}$

DC Electrical Characteristics Min/Max limits apply at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CMOS TO CMOS						
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.5			V
$\mathrm{V}_{\text {IN }(0)}$	Logical "0" Input Voltage	$V_{C C}=5 \mathrm{~V}$			1.5	V
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" Output Voltage (Carry-Out and Digit Output Only)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}$	4.5			V
V OUT(0)	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=10 \mu \mathrm{~A}$			0.5	V
$\operatorname{IN}(1)$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
$\underline{I N(0)}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-1	-0.005		$\mu \mathrm{A}$
I_{CC}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \text {, Outputs Open Circuit, } \\ & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$		20	1000	$\mu \mathrm{A}$
CMOS/LPTTL INTERFACE						
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{V}_{C C}-2$			V
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$			0.8	V
$\mathrm{V}_{\text {OUT (1) }}$	Logical "1" Output Voltage (Carry-Out and Digit Output Only)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \end{aligned}$	2.4			V
V OUT(0)	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=360 \mu \mathrm{~A}$			0.4	V
OUTPUT DRIVE						
V OUT	Output Voltage (Segment Sourcing Output)	$\begin{aligned} & \text { loUT }=-65 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \text { IOUT }=-40 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\left\{\begin{array}{l} \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{array}\right. \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-2 \\ \mathrm{~V}_{\mathrm{CC}}-1.6 \\ \mathrm{~V}_{\mathrm{CC}}-2 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.3 \\ & \mathrm{~V}_{\mathrm{CC}}-1.2 \\ & \mathrm{~V}_{\mathrm{CC}}-1.4 \end{aligned}$		V V V
RON	Output Resistance (Segment Sourcing Output) Output Resistance (Segment Output) Temperature Coefficient	$\begin{aligned} & \text { loUT }=-65 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \text { loUT }=-40 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\left\{\begin{array}{l} \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{array}\right. \end{aligned}$		$\begin{aligned} & 20 \\ & 30 \\ & 35 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 50 \\ & 0.8 \end{aligned}$	$\begin{gathered} \Omega \\ \Omega \\ \Omega \\ \% /{ }^{\circ} \mathrm{C} \end{gathered}$
Isource	Output Source Current (Digit Output)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	-1	-2		mA
Isource	Output Source Current (Carry-Out)	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-1.75	-3.3		mA
ISINK	Output Sink Current (All Outputs)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}, \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1.75	3.6		mA
$\theta_{\mathrm{j} A}$	Thermal Resistance	MM74C925 (Note 4) MM74C926, MM74C927, MM74C928		$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{gathered} 100 \\ 90 \end{gathered}$	$\begin{aligned} & \circ{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Note 1: they are operation Note 2: Note 3: AN-90. Note 4:	"Absolute Maximum Ratings" are those value ot meant to imply that the devices should apacitance is guaranteed by periodic testin Dd determines the no load AC power consu A measured in free-air with device soldered	s beyond which the safety of the device cannot be guaran be operated at these limits. The table of "Electrical Chara mption of any CMOS device. For complete explanation see into printed circuit board.	eed. Except for cteristics" provid 54C/74C Family	Operating Temp des conditions Characteristics	erature R r actual pplicatio	ange" device note,

AC Electrical Characteristics ${ }^{*} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise noted

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},$ Square Wave Clock	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & T_{j}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 1.5 \end{gathered}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Clock Rise or Fall Time	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$				15	$\mu \mathrm{S}$
twR	Reset Pulse Width	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & T_{j}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 320 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
${ }^{\text {t WLE }}$	Latch Enable Pulse Width	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 320 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 125 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
${ }^{\text {t }}$ SET(CK, LE)	Clock to Latch Enable Set-Up Time	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 2500 \\ & 3200 \\ & \hline \end{aligned}$	$\begin{aligned} & 1250 \\ & 1600 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tLR	Latch Enable to Reset Wait Time	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} -100 \\ -100 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {t SET (R, LE) }}$	Reset to Latch Enable Set-Up Time	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 320 \\ & 400 \end{aligned}$	$\begin{aligned} & 160 \\ & 200 \\ & \hline \end{aligned}$		ns
$\mathrm{f}_{\text {MUX }}$	Multiplexing Output Frequency	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			1000		Hz
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input (Note 2)			5		pF

*AC Parameters are guaranteed by DC correlated testing.

Functional Description

Reset	- Asynchronous, active high
Display Select	- High, displays output of counter Low, displays output of latch
Latch Enable	- High, flow through condition Low, latch condition
Clock	- Negative edge sensitive

Typical Performance Characteristics

Note: $\mathrm{V}_{\mathrm{D}}=$ Voltage across digit driver

TL/F/5919-3

Logic and Block Diagrams (Continued)

Switching Time Waveforms

Switching Time Waveforms (Continued)

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

MM74C925, MM74C926, MM74C927, MM74C928 4-Digit Counters

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N)
Order Number MM74C926N, MM74C927N or MM74C928N
NS Package Number N18A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

