

© 1995 National Semiconductor Corporation TL/F/5912

RRD-B30M105/Printed in U. S. A.

Absolute Maximum F	Ratings (Note 1)				
If Military/Aerospace specified	devices are required,	Operating V _{CC} Range	4V to 18V 19V 500 mA		
please contact the National	Semiconductor Sales	Absolute Maximum V _{CC}			
Office/Distributors for availabili	ty and specifications.	SOURCE			
Voltage at any Input Pin	-0.3V to V _{CC} $+0.3V$	Storage Temperature Range (Ts)	-65°C to +150°C		
Voltage at any Output Pin	32V	Lead Temperature (T ₁)	260°C		
Operating Temperature Range MM74C908/MM74C918	4000 to 1 0500	(Soldering, 10 seconds)			
	-40 0 10 +85 0	Power Dissipation (P _D)	Refer to Maximum Power Dissipation vs Ambient Temperature Graph		

DC Electrical Characteristics Min/Max limits apply across temperature range, unless otherwise noted

Symbol	Parameter	Conditions			Min	Тур	Max	Units	
СМОЅ ТО С	CMOS								
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$			3.5 8.0			V V	
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$					1.5 2.0	V V	
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$				0.005	1.0	μΑ	
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$			-1.0	-0.005		μΑ	
Icc	Supply Current	$V_{CC} = 15V$, Outputs Open Circuit				0.05	15	μΑ	
	Output "OFF" Voltage	V	$_{\sf IN}$ = V _{CC} , I _{OUT} = $-200 \ \mu$ A			-30		V	
CMOS/LPT	TL INTERFACE								
V _{IN(1)}	Logical "1" Input Voltage MM74C908/MM74C918	ge 8 V _{CC} = 4.75V			V _{CC} – 1.5			v	
V _{IN(0)}	Logical "0" Input Voltage MM74C908/MM74C918	$V_{CC} = 4.75V$					0.8	v	
OUTPUT D	RIVE								
Vout	Output Voltage		$V_{DUT} = -300 \text{ mA}, V_{CC} \ge 5V, T_J = 0$ $V_{DUT} = -250 \text{ mA}, V_{CC} \ge 5V, T_J = 0$ $V_{DT} = -175 \text{ mA}, V_{CC} \ge 5V, T_J = 0$	= 25°C = 65°C = 150°C	$V_{CC}-2.7$ $V_{CC}-3.0$ $V_{CC}-3.15$	$V_{CC} = 1.8$ $V_{CC} = 1.9$ $V_{CC} = 2.0$		V V V	
R _{ON}	Output Resistance		$V_{DUT} = -300 \text{ mA}, V_{CC} \ge 5V, T_J = 0$ $V_{DT} = -250 \text{ mA}, V_{CC} \ge 5V, T_J = 0$ $V_{DT} = -175 \text{ mA}, V_{CC} \ge 5V, T_J = 0$	= 25°C = 65°C = 150°C		6.0 7.5 10	9.0 12 18	Ω Ω Ω	
	Output Resistance Coefficient					0.55	0.80	%/°C	
θ_{JA}	Thermal Resistance MM74C908/MM74C918		(Note 3) (Note 3)			100 45	110 55	°C/W °C/W	
AC E	ectrical Characte	ris	tics*						
Symbol Parameter			Conditions Min		Тур	Max		Units	
t _{pd1}	Propagation Delay to a Logical "1"		$V_{CC} = 5V, R_L = 50\Omega,$ $C_L = 50 \text{ pF}, T_A = 25^{\circ}C$ $V_{CC} = 10V, R_L = 50\Omega,$		150	300		ns	
			$C_{L} = 50 \text{ pF}, T_{A} = 25^{\circ}\text{C}$		05	120	ns		
t _{pd0}	Propagation Delay to a Logic "0"		$\begin{array}{c} V_{CC} = 5V, R_L = 50 \Omega, \\ C_L = 50 pF, T_A = 25^\circ C \\ V_{CC} = 10V, R_L = 50 \Omega, \\ C_L = 50 pF, T_A = 25^\circ C \end{array}$		2.0	10		μs	
					4.0	20		μs	

 C_{IN} Input Capacitance (Note 2)

*AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

5.0

μs pF

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: $\theta_{\rm JA}$ measured in free air with device soldered into printed circuit board.

Power Considerations

Calculating Output "ON" Resistance ($R_L > 18\Omega$)

The output "ON" resistance, R_{ON} , is a function of the junction temperature, T_{J} , and is given by:

 $R_{ON} = 9 (T_J - 25) (0.008) + 9$

and T_J is given by: $T_J = T_A + P_{DAV} \, \theta_{JA},$

(1)

(3)

where $T_A =$ ambient temperature, $\theta_{JA} =$ thermal resistance, and P_{DAV} is the average power dissipated within the device. P_{DAV} consists of normal CMOS power terms (due to leakage currents, internal capacitance, switching, etc.) which are insignificant when compared to the power dissipated in the outputs. Thus, the output power term defines the allowable limits of operation and includes both outputs, A and B. P_D is given by:

$$P_{\rm D} = I_{\rm OA}^2 R_{\rm ON} + I_{\rm OB}^2 R_{\rm ON},$$

where I_O is the output current, given by:

$$I_{O} = \frac{V_{CC} - V_{L}}{R_{ON} + R_{L}}$$
(4)

 $V_{\mbox{L}}$ is the load voltage.

The average power dissipation, $\mathsf{P}_{\mathsf{DAV}}$ is a function of the duty cycle:

$$P_{DAV} = I_{OA}^2 R_{ON} (Duty Cycle_A) + (5)$$
$$I_{OB}^2 R_{ON} (Duty Cycle_B)$$

where the duty cycle is the % time in the current source state. Substituting equations (1) and (5) into (2) yields:

$$\begin{split} T_J &= T_A + \theta_{JA} \left[9 \left(T_J - 25\right) \left(0.008\right) + 9\right] \\ & \left[I_{OA}^2 \left(\text{Duty Cycle}_A\right) + I_{OB}^2 \left(\text{Duty Cycle}_B\right)\right] \end{split} \tag{6a}$$

simplifying:

 $T_{J} = \frac{T_{A} + 7.2 \ \theta_{JA} \ [I_{OA}^{2} \ (Duty \ Cycle_{A}) + I_{OB}^{2} \ (Duty \ Cycle_{B})]}{1 - 0.072 \ \theta_{JA} \ [I_{OA}^{2} \ (Duty \ Cycle_{A}) + I_{OB}^{2} \ (Duty \ Cycle_{B})]}$

Equations (1), (4), and (6b) can be used in an iterative method to determine the output current, output resistance and junction temperature.

Applications

(See AN-177 for applications)

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications