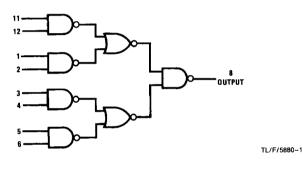
National Semiconductor

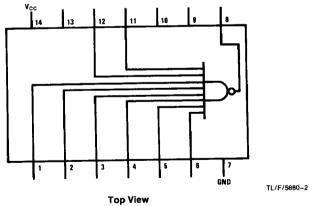
MM54C30/MM74C30 8-Input NAND Gate

General Description

The logical gate employs complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption and high noise immunity. Function and pin out compatibility with series 54/74 devices minimizes design time for those designers familiar with the standard 54/74 logic family.


All inputs are protected from damage due to static discharge by diode clamps to V_{CC} and GND.

Logic and Connection Diagrams


Features

- Wide supply voltage range
- Guaranteed noise margin
- High noise immunity
- Low power
- TTL compatibility

3.0V to 15V 1.0V 0.45 V_{CC} (typ.) Fan out of 2 driving 74L

Dual-In-Line Package

Order Number MM54C30* or MM74C30*

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Voltage at any Pin	-0.3V to V _{CC} + 0.3V
Operating Temperature Range (T _A)	
MM54C30	-55°C to +125°C
MM74C30	-40°C to +85°C

-65°C to +150°C
700 mW
500 mW
3.0V to 15V
18V
260°C

DC Electrical Characteristics Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
MOS TO CI	MOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			v
		$V_{\rm CC} = 10V$	8.0			v
V _{IN(0)}	Logical "0" Input Voltage	$V_{\rm CC} = 5V$			1.5	v
		$V_{CC} = 10V$			2.0	v
VOUT(1)	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \ \mu A$	4.5			V
		$V_{\rm CC} = 10V, I_{\rm O} = -10 \mu{\rm A}$	9.0			v
VOUT(0)	Logical "0" Output Voltage	$V_{\rm CC} = 5V, I_{\rm O} = 10 \mu{\rm A}$			0.5	v
	-	$V_{\rm CC} = 10V, I_{\rm O} = 10 \mu{\rm A}$			1.0	v
l _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μA
IIN(0)	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	- 1.0	-0.005		μΑ
lcc	Supply Current	$V_{CC} = 15V$		0.01	15	μA
MOS/LPTT	L INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	54C, $V_{CC} = 4.5V$	V _{CC} - 1.5			v
		74C, $V_{CC} = 4.75V$	V _{CC} - 1.5		********	v
V _{IN(0)}	Logical "0" Input Voltage	54C, V _{CC} = 4.5V			0.8	v
		74C, V _{CC} = 4.75V			0.8	v
VOUT(1)	Logical "1" Output Voltage	54C, $V_{CC} = 4.5V$, $I_O = -360 \mu A$	2.4			v
		74C, $V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4			v
VOUT(0)	Logical "0" Output Voltage	$54C, V_{CC} = 4.5V, I_O = 360\mu A$			0.4	v
		74C, $V_{CC} = 4.75V$, $I_O = 360\mu A$			0.4	v
UTPUT DR	IVE (See 54C/74C Family Char	acteristics Data Sheet) (short circult o	current)			
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 5V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	- 1.75	-3.3		mA
SOURCE	Output Source Current (P-Channel)	$V_{CC} = 10V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-8.0	15		mA
ISINK	Output Sink Current (N-Channel)	$V_{CC} = 5V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	1.75	3.6		mA
ISINK	Output Sink Current (N-Channel)	$V_{CC} = 10V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	8.0	16		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

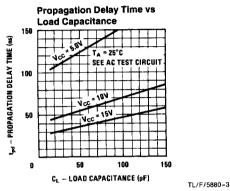
MM54C30/MM74C30

6-21

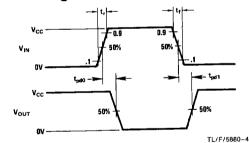
1

MM54C30/MM74C30

AC Electrical Characteristics* T_A = 25°C, C_L = 50 pF, unless otherwise specified

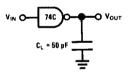

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{od}	Propagation Delay Time to	$V_{\rm CC} = 5V$		125	180	ns
Logical "1" or "0"	Logical "1" or "0"	$V_{\rm CC} = 10V$		55	90	ns
CIN	Input Capacitance	(Note 2)		4.0		pF
CPD	Power Dissipation Capacitance	(Note 3) Per Gate		26		pF

*AC Parameters are guaranteed by DC correlated testing.


Note 2: Capacitance is guaranteed by periodic testing.

Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics, application note-AN-90.

Typical Performance Characteristics



Switching Time Waveforms

Note: Delays Measured with Input t_r , $t_f = 20$ ns.

AC Test Circuit

TL/F/5880-5

.....

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

MM74C30N - http://www.ti.com/product/mm74c30n?HQS=TI-null-null-dscatalog-df-pf-null-wwe