

MM54C200/MM74C200 256-Bit TRI-STATE® Random Access Read/Write Memory

General Description

The MM54C200/MM74C200 is a 256-bit random access read/write memory. Inputs consist of eight address lines and three chip enables. The eight binary address inputs are decoded internally to select each of the 256 locations. The internal address register, latches, and address information are on the positive to negative edge of $\overline{\text{CE}}_3$. The TRISTATE data output line, working in conjunction with $\overline{\text{CE}}_1$ or $\overline{\text{CE}}_2$ inputs, provides for easy memory expansion.

Address Operation: Address inputs must be stable t_{SA} prior to the positive to negative transition of \overline{CE}_3 . It is therefore unnecessary to hold address information stable for more than t_{HA} after the memory is enabled (positive to negative transition).

Note: The timing is different from the DM74200 in that a positive to negative transition of the $\overline{\text{CE}}_3$ must occur for the memory to be selected.

Read Operation: The data is read out by selecting the proper address and bringing $\overline{\text{CE}}_3$ low and $\overline{\text{WE}}$ high.

Holding either \overline{CE}_1 , \overline{CE}_2 , or \overline{CE}_3 at a high level forces the output into TRI-STATE. When used in bus-organized systems, \overline{CE}_1 , or \overline{CE}_2 , a TRI-STATE control provides for fast access times by not totally disabling the chip.

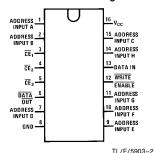
Write Operation: Data is written into the memory with \overline{CE}_3 low and \overline{WE} low. The state of \overline{CE}_1 or \overline{CE}_2 has no effect on the write cycle. The output assumes TRI-STATE with \overline{WE} low.

Features

- Wide supply voltage range
- Guaranteed noise margin
 - 0.45
- High noise immunityTTL compatibility
- 0.45 V_{CC} (typ.) Fan out of 1 driving standard TTL

500 nW (typ.)

3V to 15V


1V

- Low power
- Internal address register

Logic and Connection Diagrams

Dual-In-Line Package

Top View

Order Number MM54C200 or MM74C200

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Any Pin

-0.3V to $V_{CC} + 0.3V$

Operating Temperature Range (T_A) MM54C200

 -55°C to $+125^{\circ}\text{C}$

MM74C200

-40°C to +85°C

Storage Temperature Range (T_S)

-65°C to +150°C

Power Dissipation (PD) Dual-In-Line

Small Outline Operating V_{CC} Range

700 mW 500 mW 3V to 15V 18V

Absolute Maximum V_{CC} Lead Temperature (T_I) (Soldering, 10 seconds)

260°C

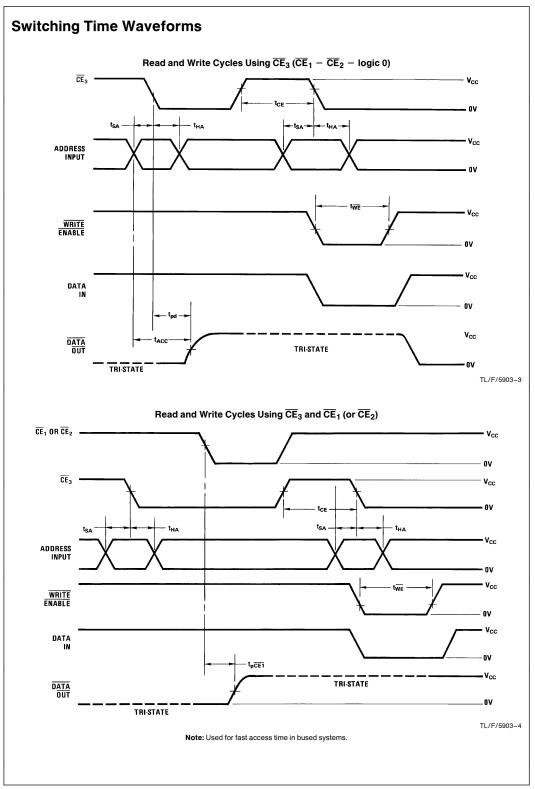
DC Electrical Characteristics Min/Max limits apply across temperature range unless otherwise noted

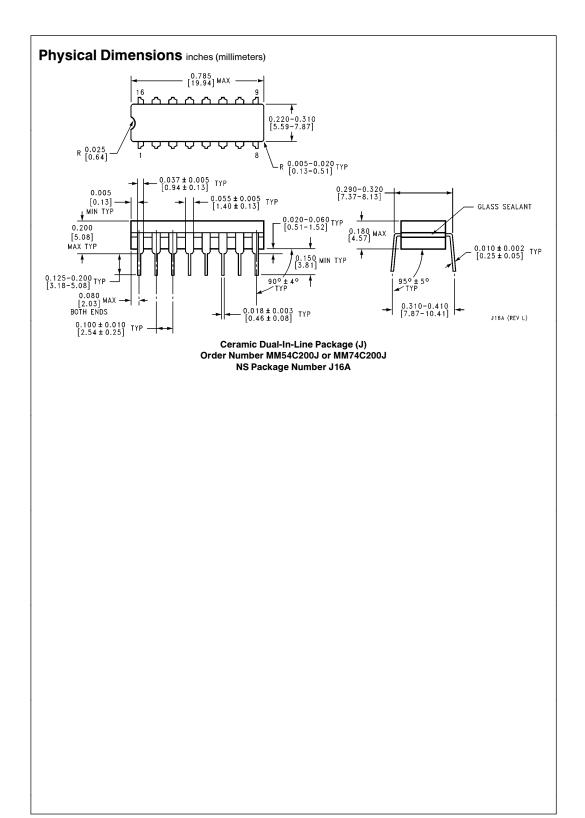
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO CM	//OS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$	3.5 8			V V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$			1.5 2	V V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$ $V_{CC} = 10V, I_{O} = -10 \mu A$	4.5 9			V V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$, $I_{O} = +10 \mu A$ $V_{CC} = 10V$, $I_{O} = +10 \mu A$			0.5 1	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} =15V, V _{IN} =15V		0.005	1	μΑ
I _{IN(0)}	Logical "0" Input Current	V _{CC} =15V, V _{IN} =0V	-1	-0.005		μΑ
Icc	Supply Current	V _{CC} = 15V		0.1	600	μΑ
CMOS/TTL I	NTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	$54C V_{CC} = 4.5V$ $74C V_{CC} = 4.75V$	V _{CC} -1.5 V _{CC} -1.5			V V
V _{IN(0)}	Logical "0" Input Voltage	54C V _{CC} = 4.5V 74C V _{CC} = 4.75V			0.8 0.8	V V
V _{OUT(1)}	Logical "1" Output Voltage	54C V_{CC} =4.5V, I_{O} = -1.6 mA 74C V_{CC} =4.75V, I_{O} = -1.6 mA	2.4 2.4			V V
V _{OUT(0)}	Logical "0" Output Voltage	54C V _{CC} = 4.5V, I _O = 1.6 mA 74C V _{CC} = 4.75V, I _O = 1.6 mA			0.4	٧
OUTPUT DR	VE (See 54C/74C Family Chara	acteristics Data Sheet) (Short Circuit	Current)			
ISOURCE	Output Source Current (P-Channel)	V _{CC} =5V, V _{OUT} =0V T _A =25°C	-4 -1.8	-6		mA mA
I _{SOURCE}	Output Source Current (P-Channel)	V _{CC} =10V, V _{OUT} =0V T _A =25°C	-16 -1.5	-25		mA mA
I _{SINK}	Output Sink Current (N-Channel)	V _{CC} =5V, V _{OUT} =V _{CC} T _A =25°C	5	8		mA
I _{SINK}	Output Sink Current (N-Channel)	V _{CC} =10V, V _{OUT} =V _{CC} T _A =25°C	20	30		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device

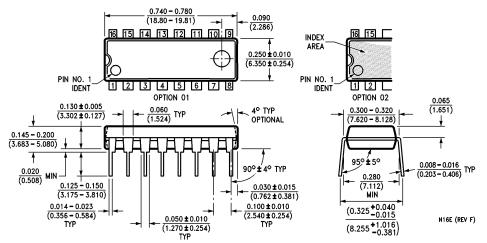
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{ACC}	Access Time from Address	$V_{CC} = 5V$ $V_{CC} = 10V$		450 200	900 400	ns ns
t _{pd}	Propagation Delay from $\overline{\text{CE}}_3$	$V_{CC} = 5V$ $V_{CC} = 10V$		360 120	700 300	ns ns
t _{pCE1}	Propagation Delay from \overline{CE}_1 or \overline{CE}_2	$V_{CC} = 5V$ $V_{CC} = 10V$		250 85	700 200	ns ns
t _{SA}	Address Setup Time	$V_{CC} = 5V$ $V_{CC} = 10V$	200 100	80 30		ns ns
t _{HA}	Address Hold Time	$V_{CC} = 5V$ $V_{CC} = 10V$	50 25	15 5.0		ns ns
t₩E	Write Enable Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$	300 150	160 70		ns ns
t _{CE}	CE ₃ Pulse Widths	$V_{CC} = 5V$ $V_{CC} = 10V$	400 160	200 80		ns ns
C _{IN}	Input Capacity	Any Input (Note 2)		5.0		pF
C _{OUT}	Output Capacity in TRI-STATE	(Note 2)		9.0		pF
C _{PD}	Power Dissipation Capacity	(Note 3)		400		pF

AC Electrical Characteristics* $c_L = 50 \ pF$


Symbol	Parameter	Conditions	MM54C200 $T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$		MM74C200 T _A = -40°C to +85°C		Units
			Min	Max	Min	Max	
t _{ACC}	Access Time from Address	$V_{CC} = 5V$ $V_{CC} = 10V$		1200 520		1100 480	ns ns
t _{pd}	Propagation Delay from $\overline{\text{CE}}_3$	$V_{CC} = 5V$ $V_{CC} = 10V$		950 400		850 360	ns ns
t _{pd} CE1	Propagation Delay from CE ₁ or CE ₂	$V_{CC} = 5V$ $V_{CC} = 10V$		650 300		600 275	ns ns
t _{SA}	Address Setup Time	$V_{CC} = 5V$ $V_{CC} = 10V$	250 120		250 120		ns ns
t _{HA}	Address Hold Time	$V_{CC} = 5V$ $V_{CC} = 10V$	100 50		100 50		ns ns
tWE	Write Enable Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$	450 225		400 200		ns ns
t _{CE}	Disable Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$	500 250		460 230		ns ns
t _{HD}	Data Hold Time	$V_{CC} = 5V$ $V_{CC} = 10V$	50 25		50 25		ns ns


 $^{^*\}mbox{AC}$ Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


Note 2: Capacitance is guaranteed by periodic testing.

Note 3: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number MM54C200N or MM74C200N NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408