Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Outputs
$\frac{\mathrm{OE}}{1}$,	
$\overline{\mathrm{OE}}$	2
$\overline{\mathrm{EN}}$	$\overline{O E}_{3}$
$\overline{\mathrm{CLR}}$	Output Enables
CP	Clock Enable
	Clear
	Clock Input

Functional Description

The 'ACT825 consists of eight D-type edge-triggered flipflops. These devices have TRI-STATE ${ }^{\circledR}$ outputs for bus systems, organized in a broadside pinning. In addition to the clock and output enable pins, the buffered clock (CP) and buffered Output Enable ($\overline{\mathrm{OE}}$) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH CP transition. With $\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$ and $\overline{\mathrm{OE}}_{3}$ LOW, the contents of the flip-flops are available at the outputs. When one of $\overline{O E}_{1}, \overline{\mathrm{OE}}_{2}$ or $\overline{\mathrm{OE}}_{3}$ is HIGH, the outputs go to the high impedance state.

Operation of the $\overline{O E}$ input does not affect the state of the flip-flops. The 'ACT825 has Clear ($\overline{\mathrm{CLR} \text {) and Clock Enable }}$ ($\overline{\mathrm{EN}}$) pins. These pins are ideal for parity bus interfacing in high performance systems.
When $\overline{C L R}$ is LOW and $\overline{O E}$ is LOW, the outputs are LOW. When CLR is HIGH, data can be entered into the flip-flops. When $\overline{\mathrm{EN}}$ is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When $\overline{E N}$ is HIGH, the outputs do not change state, regardless of the data or clock input transitions.

Function Table							
Inputs					Internal	Output	Function
$\overline{O E}$	CLR	EN	CP	D_{n}	Q	0	
H	X	L	\checkmark	L	L	Z	High-Z
H	X	L	\checkmark	H	H	Z	High-Z
H	L	X	X	X	L	Z	Clear
L	L	X	X	X	L	L	Clear
H	H	H	X	X	NC	Z	Hold
L	H	H	X	X	NC	NC	Hold
H	H	L	$\widetilde{ }$	L	L	Z	Load
H	H	L	\bigcirc	H	H	Z	Load
L	H	L	\bigcirc	L	L	L	Load
L	H	L	$\widetilde{ }$	H	H	H	Load

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance
$\widehat{N}=$ LOW-to-HIGH Transition
NC $=$ No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right) \quad-0.5 \mathrm{~V}$ to 7.0 V
DC Input Diode Current (I_{IK})

$$
V_{1}=-0.5 \mathrm{~V}
$$

$$
V_{1}=V_{C C}+0.5 \mathrm{~V}
$$

$$
-20 \mathrm{~mA}
$$

$$
+20 \mathrm{~mA}
$$

DC Input Voltage (V_{l})
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current (lok)

$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$+20 \mathrm{~mA}$
DC Output Voltage (V_{O})	$+0.5 \mathrm{~V}$
DC Output Source or Sink Current (I)	$\pm 50 \mathrm{~mA}$
DC V $V_{C C}$ or Ground Current Per Output Pin (ICC or IGND)	$\pm 50 \mathrm{~mA}$
Storage Temperature (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (T_{J})	
CDIP	$175^{\circ} \mathrm{C}$
PDIP	$140^{\circ} \mathrm{C}$

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACTTM circuits outside databook specifications.

Recommended Operating

 Conditions| Supply Voltage $\left(V_{C C}\right)$ | 4.5 V to 5.5 V |
| :--- | ---: |
| 'ACT | 0 V to V_{CC} |
| Input Voltage $\left(\mathrm{V}_{\mathrm{l}}\right)$ | 0 V to V_{CC} |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | |
| Operating Temperature ($\left.\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| 74 ACT | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| 54ACT | |
| Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$ | |
| 'ACT Devices | |
| $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V | $125 \mathrm{mV} / \mathrm{ns}$ |

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	74ACT		54ACT	74ACT	Units	Conditions
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} T_{A}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathbf{T}_{\mathbf{A}}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits				
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & V_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 4.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \\ & \hline \end{aligned}$	V	$\begin{array}{\|ll} \hline{ }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{I}_{\mathrm{OH}} & -24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{array}$
$\mathrm{V}_{\text {OL }}$	Maximum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.001 \\ 0.001 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	IOUT $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & \hline \end{aligned}$	V	$\begin{array}{\|lr} \hline{ }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{l} \mathrm{OL} & 24 \mathrm{~mA} \\ 24 \mathrm{~mA} \\ \hline \end{array}$
$\mathrm{IIN}^{\text {I }}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
loz	Maximum TRI-STATE Current	5.5		± 0.5	± 10.0	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
ICCT	Maximum $\mathrm{ICC}^{\text {/ }}$ Input	5.5	0.6		1.6	1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
loLD	\dagger Minimum Dynamic Output Current	5.5			50	75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V} \mathrm{Max}$
${ }^{\text {IOHD }}$		5.5			-50	-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	160	80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND

[^0]
AC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}{ }^{*}$ (V)	$\begin{gathered} 74 \mathrm{ACT} \\ \hline \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			54ACT		74ACT		Units
						$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	5.0	120	158		95		109		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay CP to O_{n}	5.0	1.5	5.5	9.5	1.5	11.5	1.5	10.5	ns
${ }_{\text {tPHL }}$	Propagation Delay CP to O_{n}	5.0	2.0	5.5	9.5	1.5	11.5	1.5	10.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{C L R}$ to O_{n}	5.0	2.5	8.0	13.5	1.5	18.0	2.0	15.5	ns
${ }_{\text {tpZH }}$	Output Enable Time $\overline{O E}$ to O_{n}	5.0	1.5	6.0	10.5	1.5	11.5	1.5	11.5	ns
$t_{\text {PZL }}$	Output Enable Time $\overline{\mathrm{OE}}$ to O_{n}	5.0	2.0	6.5	11.0	1.5	12.5	1.5	12.0	ns
${ }^{\text {tPHZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to O_{n}	5.0	1.5	6.5	11.0	1.5	13.5	1.5	12.0	ns
$t_{\text {PLZ }}$	Output Disable Time $\overline{O E}$ to O_{n}	5.0	1.5	6.0	10.5	1.5	13.0	1.5	11.5	ns

*Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathbf{v}_{\mathbf{C C}}{ }^{*} \\ (\mathrm{~V}) \end{gathered}$	74ACT		54ACT	74ACT	Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	
			Typ	Guaranteed Minimum			
t_{s}	Setup Time, HIGH or LOW $D_{n} \text { to } C P$	5.0	0.5	2.5	4.0	2.5	ns
t_{h}	Hold Time, HIGH or LOW D_{n} to CP	5.0	0	2.5	2.5	2.5	ns
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW $\overline{\mathrm{EN}}$ to CP	5.0	0	2.0	4.0	2.5	ns
$t_{\text {h }}$	Hold Time, HIGH or LOW $\overline{\mathrm{EN}}$ to CP	5.0	0	1.0	2.0	1.0	ns
$t_{\text {w }}$	CP Pulse Width HIGH or LOW	5.0	2.5	4.5	6.0	5.5	ns
t_{w}	CLR Pulse Width, LOW	5.0	3.0	5.5	7.0	5.5	ns
$\mathrm{t}_{\text {rec }}$	$\overline{\mathrm{CLR}}$ to CP Recovery Time	5.0	1.5	3.5	4.5	4.0	ns

*Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$
C_{PD}	Power Dissipation Capacitance	44	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

24 Lead Slim ($0.300^{\prime \prime}$ Wide) Ceramic Dual-In-Line (SD)
NS Package Number J24F

Physical Dimensions inches (millimeters) (Continued)

24 Lead Slim ($0.300^{\prime \prime}$ Wide) Plastic Dual-In-Line (SP)
NS Package Number N24C
54ACT/74ACT825 8-Bit D Flip-Flop
Physical Dimensions inches (millimeters) (Continued)
Lit. \# 114637

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]: *All outputs loaded; thresholds on input associated with output under test.
 \dagger Maximum test duration 2.0 ms , one output loaded at a time.
 Note: ICC limit for 54 ACT @ $25^{\circ} \mathrm{C}$ is identical to 74 ACT @ $25^{\circ} \mathrm{C}$.

