

Octal Transparent Latch, 3-State

CD54/74AC/ACT563 - Inverting CD54/74AC/ACT573 - Non-Inverting

Type Features:

- Buffered inputs
- Typical propagation delay: 4.3 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF

The RCA-CD54/74AC563 and CD54/74AC573 and the CD54/74ACT563 and CD54/74ACT573 octal transparent 3-state latches use the RCA ADVANCED CMOS technology. The outputs are transparent to the inputs when the Latch Enable (LE) is HIGH. When the Latch Enable (LE) goes LOW, the data is latched. The Output Enable (OE) controls the 3-state outputs. When the Output Enable (OE) is HIGH, the outputs are in the high-impedance state. The latch operation is independent of the state of the Output Enable.

The CD74AC/ACT563 and CD74AC/ACT573 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC/ACT563 and CD54AC/ACT573, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

TRUTH TABLE

Output Enable	Latch Enable	Data	AC/ACT563 Output	AC/ACT573 Output	
L.	н	н	L	н	
L	н	L	Н	L	
L	L	1	н ।	L	
L	L	h	L	Н	
н	X	×	Z	Z	

Note

- L = Low voltage level
- H = High voltage level
- 1 = Low voltage level one set-up time prior to the high to low latch enable transition
- h ≈ High voltage level one set-up time prior to the high to low latch enable transition.
- X = Don't Care
- Z ≈ High Impedance State

This data sheet is applicable to the CD74AC563, CD54/74AC573, and CD54/74ACT573. The CD54AC563 and CD54/74ACT563 were not acquired from Harris Semiconductor.

^{*}FAST is a Registered Trademark of Fairchild Semiconductor Corp.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIW			
	LIMITS MIN. MAX. 1.5 5.5 4.5 5.5 0 V _∞ -55 +125 0 50	MAX.	UNITS	
Supply-Voltage Range, V _{Cc} *: (For T _A = Full Package-Temperature Range) AC Types ACT Types	i -		V	
DC Input or Output Voltage, V _I , V _O	0	Vcc	V	
Operating Temperature, T _A :	-55	+125	°C	
Input Rise and Fall Slew Rate, dt/dv at 1.5 V to 3 V(AC Types) at 3.6 V to 5.5 V(AC Types) at 4.5 V to 5.5 V(ACT Types)	0 0	50 20 10	ns/V ns/V	

^{*}Unless otherwise specified, all voltages are referenced to ground.

TERMINAL ASSIGNMENT DIAGRAMS

CD54/74AC563, CD54/74ACT563

CD54/74AC573, CD54/74ACT573

STATIC ELECTRICAL CHARACTERISTICS: AC Series

					AMBIEN	TEMPE	RATURE	(T _A) - °(С	Ţ <u></u>	
CHARACTERISTICS	S	TEST COM	IDITIONS	V _{cc}	+:	25	-40 to	o +85	-55 to	+125	UNITS
			l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN. MAX.		
High-Level Input				1.5	1.2	_	1.2	_	1.2		
Voltage	V _{IH}			3	2.1	_	2.1		2.1		V
				5.5	3.85		3.85	_	3.85]
Low-Level Input				1.5	_	0.3	_	0.3		0.3	
• Voltage	VIL			3		0.9	_	0.9	'	0.9	V
				5.5	_	1.65	_	1.65	<u> </u>	1.65	
High-Level Output			-0.05	1.5	1.4		1.4		1.4	_	
Voltage	V _{OH}	ViH	-0.05	3	2.9	_	2.9	_	2.9	_	
		or	-0.05	4.5	4.4		4.4	_	4.4		1
		VıL	-4	3	2.58	_	2.48	_	2.4	_	V
			-24	4.5	3.94		3.8		3.7	_	1
		(-75	5.5	_		3.85	_	_	_	1
		#. * {	-50	5.5		_	_	_	3.85	_	1
Low-Level Output			0.05	1.5	_	0.1		0.1		0.1	
Voltage	V_{OL}	ViH	0.05	3	_	0.1		0.1		0.1	1
		or	0.05	4.5	_	0.1	_	0.1	_	0.1	1
		VıL	12	3	_	0.36	_	0.44	_	0.5	V
		·	24	4.5	_	0.36		0.44	_	0.5	1
•		5	75	5.5				1.65	_	_	
		#, * {	50	5.5	_	_		_		1.65	1
Input Leakage Current	1,	V _{cc} or GND		5.5	_	±0.1	_	±1	_	±1	μΑ
3-State Leakage		ViH									
Current	loz	or									
		Vic									ļ
		Vo=		5.5	_	±0.5	_	±5	_	±10	μΑ
		Vcc									
		or						1			
		GND									
Quiescent Supply Current, MSI	Icc	V _{cc} or GND	0	5.5		8		80		160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

						AMBIEN	T TEMP	ERATURE	E (T _A) - °	С	
CHARACTERIST	ice.	TEST CO	NDITIONS	V _{cc}	+	25	-40 1	o +85	-55 t	o +125	UNITS
or introduction		V, (V)	I _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MIN. MAX.	
High-Level Input Voltage	V _{IH}			4.5 to 5.5	2	_	2	_	2	-	v
Low-Level Input Voltage	Vil			4.5 to 5.5		0.8	_	0.8	_	0.8	v
High-Level Output		V _{IH}	-0.05	4.5	4.4		4.4	_	4.4	_	
Voltage	V _{OH}	or V _{IL}	-24	4.5	3.94		3.8	_	3.7	-	V.
		#, * {	-75	5.5	_		3.85	_		_] v .
			-50	5.5					3.85		
Low-Level Output Voltage	Vol	V _{IH}	0.05	4.5		0.1	_	0.1	_	0.1	
	VOL	ViL	24	4.5	_	0.36	l —	0.44	_	0.5]
		#, * {	75	5.5		_	_	1.65	_	_	\ \
		<u>"'</u>	50	5.5		_	_	_	_	1.65	1
Input Leakage Current	l _t	V∞ or GND		5.5	_	±0.1	_	±1	_	±1	μΑ
3-State Leakage Current	loz	V _{IH} or									
		V _{IL} V _O = V _{CC}		5.5		±0.5	_	±5	-	±10	μΑ
		or GND									
Quiescent Supply Current, MSI	Icc	V _{cc} or GND	0	5.5		8	 .	80	_	160	μΑ
Additional Quiescent Current per Input P TTL Inputs High 1 Unit Load	Supply in ΔI _{cc}	V _{cc} -2.1		4.5 to 5.5	_	2.4	_	2.8		3	, mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

ACT INPUT LOADING TABLE

INPUT	UNIT LOAD*						
INPUT	ACT563	ACT573					
ŌĒ	0.87	0.87					
Dn	0.5	0.5					
LĒ	0.8	0.8					

*Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C.

PREREQUISITE FOR SWITCHING: AC Series

			AMBI	Γ _Λ) -° C			
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 to +85		-55 to +125		UNITS
		(*)	MIN.	MAX.	MIN.	MAX.	
LE Pulse		1.5	44	_	50	_	
Width	tw	3.3* 5†	4.9 3.5		5.6 4	_	ns
Setup Time Data to LE	tsu	1.5 3.3 5	2 2 2		2 2 2	_ 	ns
Hold Time Data to LE	tн	1.5 3.3 5	33 3.7 2.6		38 4.2 3		ns

*3.3 V: min. is @ 3 V †5 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t, t, = 3 ns, C, = 50 pF

			AMBII	ENT TEMPE	RATURE (1	۸) - °C	_
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 t	o +85	-55 to	+125	UNITS
		(*)	MIN.	MAX.	MIN.	MAX.	1
Propagation Delays: Data to Qn AC563	t _{PLH} t _{PHL}	1.5 3.3* 5†	3.8 2.7	119 13.4 9.5	3.7 2.6	131 14.7 10.5	ns
AC573	tегн teнr	1.5 3.3 5	3.1 2.2	96 10.8 7.7	- 3 2.1	106 11.9 8.5	ns
LE on Qn AC563	t _{PLH} t _{PHL}	1.5 3.3 5	4.3 3.1	136 15.3 10.9	- 4.2 3	150 16.8 12	ns
AC573	tpLH tpHL	1.5 3.3 5	4.3 3.1	136 15.3 10.9	4.2 3	150 16.8 12	ns
Output Enable Times	tezi tezh	1.5 3.3 5	4.1 2.7	119 14.4 9.5	- 4 2.6	131 15.8 10.5	ns
Output Disable Times	t _{PLZ} t _{PHZ}	1.5 3.3 5	3.7 3	131 13.1 10.5	3.6 2.9	144 14.4 11.5	ns
Power Dissipation Capacitance	C _{PO} §	_	63	Тур.	63	Тур.	рF
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5	4 Typ. @ 25°C				٧
Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Typ. @ 25°C			V	
Input Capacitance	Cı			10		10	pF
3-State Output Capacitance	Co	_	<u> </u>	15		15	pF

*3.3 V: min, is @ 3.6 V max, is @ 3 V

†5 V: min. is @ 5.5 V max. is @ 4.5 V

§C_{PO} is used to determine the dynamic power consumption, per latch.

 $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where $f_i = input$ frequency

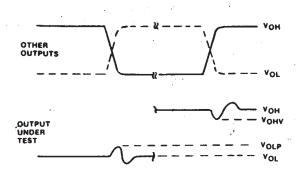
C_L = output load capacitance

 V_{CC} = supply voltage.

PREREQUISITE FOR SWITCHING: ACT Series

		V	AMBI					
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 to +85		-55 to +125		UNITS	
		(*/	MIN.	MAX.	MIN.	MAX.		
LE Pulse Width	tw	5†	3.5	_	4	_	ns	
Setup Time Data to LE	t _{su}	5	2	_	2	_	ns	
Hold Time Data to LE	tн	5	2.6	_	3	_	ns	

†5 V: min. is @ 4.5 V

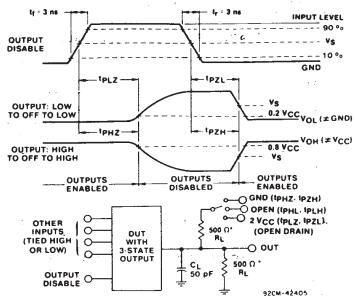

SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, C, = 50 pF

			AMBI	Γ _A) - °C			
CHARACTERISTICS	SYMBOL	V _{cc} (V)		o +85		+125	UNITS
		(*)	MIN.	MAX.	MIN.	MAX.	1
Propagation Delays: Data to Qn 563	t _{PLH}		2.9	10.4	2.9	11.4	
573	1	5†	2.7	9.4	2.6	10.4	ns
LE to Qn 563 573	t _{PLH} t _{PHL}	5	3.2	11.4	3.1	12.5	ns
Output Enable Times	t _{PZL} t _{PZH}	5	3.5	12.3	3.4	13.5	ns
Output Disable Times	t _{PLZ}	5	3.2	11.4	3.1	12.5	ns
Power Dissipation Capacitance	CPO§		63	I Гур.	63	pF	
Min. (Valley) V _{он} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5		63 Typ. 63 Typ. 4 Typ. @ 25°C			
Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Тур. @ 25°С			V	
Input Capacitance	C _i			10	_	10	ρF
3-State Output Capacitance	Co	_	_	15		15	pF

†5 V: min. is @ 5.5 V max. is @ 4.5 V

§CPD is used to determine the dynamic power consumption, per latch. $P_D = V_{cc}^2 f_c (C_{PD} + C_L) + V_{cc} \Delta I_{cc}$ where $f_c = input$ frequency $C_L = output$ load capacitance $V_{cc} = supply voltage$.

PARAMETER MEASUREMENT INFORMATION



NOTES:

- 1. V_{OHV} AND V_{OLP} ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST.
- 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS:

9205-42406

Fig. 1 - Simultaneous switching transient waveforms.

*FOR AC SERIES ONLY: WHEN $V_{CC} = 1.5~V_{\rm t} R_L = 1~k\Omega$

Fig. 2 - Three-state propagation delay waveforms and test circuit.

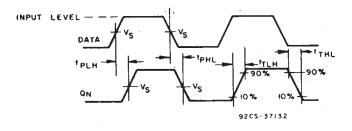


Fig. 3 - Data to Qn output propagation delays.

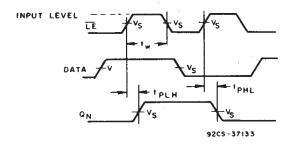


Fig. 4 - Latch enable propagation delays.

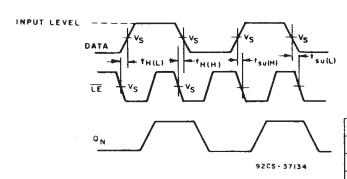


Fig. 5 - Latch enable prerequisite times.

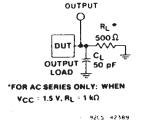


Fig. 6 - Test circuit.

	CD54/74AC	CD54/74ACT
Input Level	V _{cc}	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 V _{CC}

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD54AC573F3A	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	CD54AC573F3A	Samples
CD54ACT573F3A	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	CD54ACT573F3A	Samples
CD74AC573E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	NIPDAU	N / A for Pkg Type	-55 to 125	CD74AC573E	Samples
CD74AC573M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC573M	Samples
CD74AC573M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC573M	Samples
CD74AC573M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC573M	Samples
CD74AC573MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC573M	Samples
CD74ACT573E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	NIPDAU	N / A for Pkg Type	-55 to 125	CD74ACT573E	Samples
CD74ACT573M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT573M	Samples
CD74ACT573M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT573M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

6-Feb-2020

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54AC573, CD54ACT573, CD74AC573, CD74ACT573:

Catalog: CD74AC573, CD74ACT573

Military: CD54AC573, CD54ACT573

NOTE: Qualified Version Definitions:

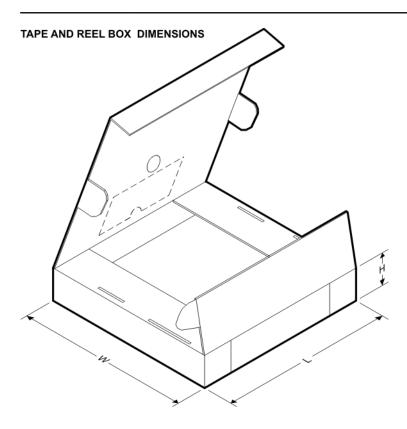
- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC573M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74ACT573M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1

www.ti.com 26-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC573M96	SOIC	DW	20	2000	367.0	367.0	45.0
CD74ACT573M96	SOIC	DW	20	2000	367.0	367.0	45.0

14 LEADS SHOWN

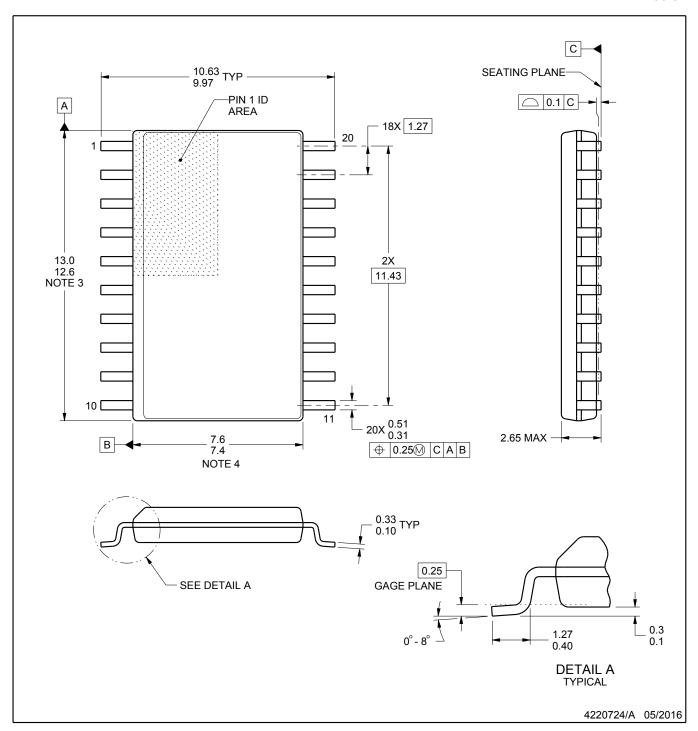
NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

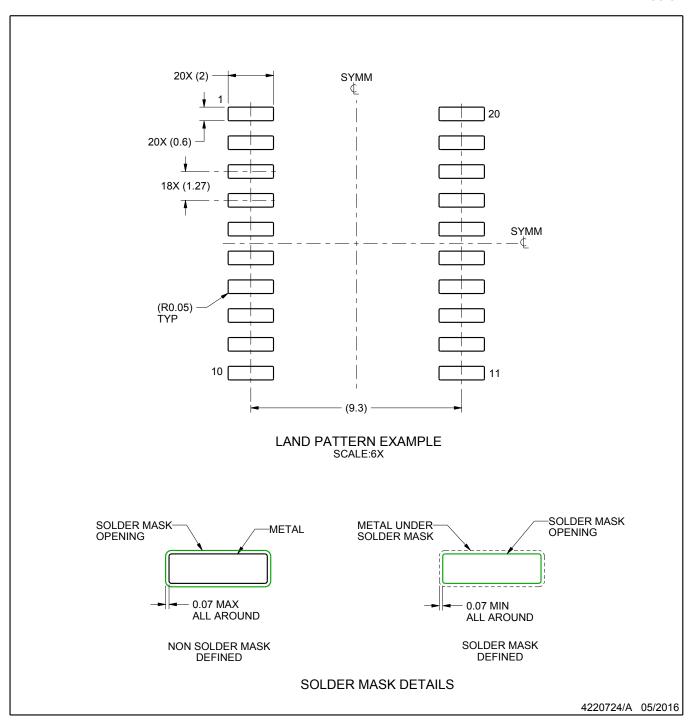
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOIC

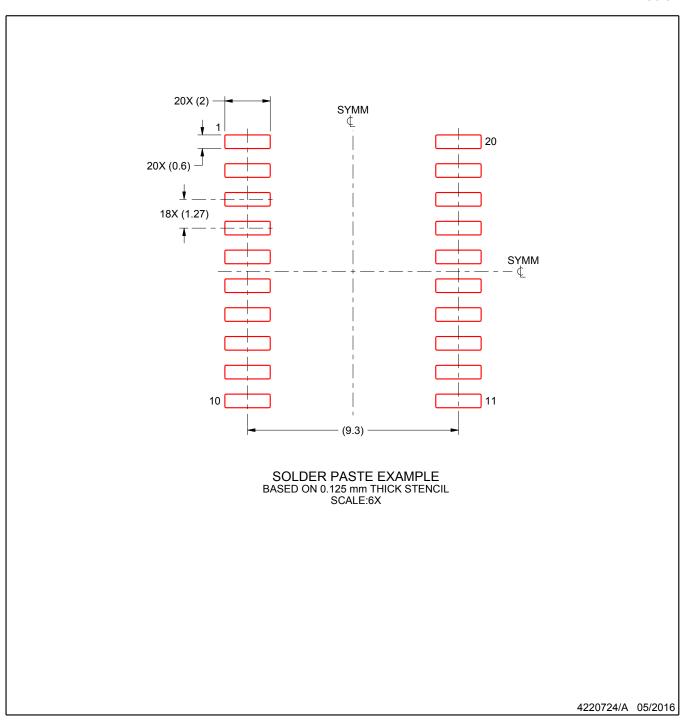
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated