DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40106B gates Hex inverting Schmitt trigger

File under Integrated Circuits, IC04

DESCRIPTION

Each circuit of the HEF40106B functions as an inverter with Schmitt-trigger action. The Schmitt-trigger switches at different points for the positive and negative-going input signals. The difference between the positive-going voltage $\left(\mathrm{V}_{\mathrm{P}}\right)$ and the negative-going voltage $\left(\mathrm{V}_{\mathrm{N}}\right)$ is defined as hysteresis voltage $\left(\mathrm{V}_{\mathrm{H}}\right)$.

This device may be used for enhanced noise immunity or to "square up" slowly changing waveforms.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF40106BP(N): 14-lead DIL; plastic
(SOT27-1)
HEF40106BD(F): 14-lead DIL; ceramic (cerdip)
(SOT73)
HEF40106BT(D): 14-lead SO; plastic
(SOT108-1)
(): Package Designator North America

Fig. 3 Logic diagram (one inverter).

FAMILY DATA, IDD LIMITS category GATES
See Family Specifications

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

	$\mathbf{V}_{\mathbf{D D}}$	SYMBOL	MIN.	TYP.	MAX.	
	\mathbf{V}					
Hysteresis	5		0,5	0,8		V
voltage	10	$\mathrm{~V}_{\mathrm{H}}$	0,7	1,3		V
	15		0,9	1,8		V
Switching levels	5		2	3,0	3,5	V
positive-going	10	$\mathrm{~V}_{\mathrm{P}}$	3,7	5,8	7	V
input voltage	15		4,9	8,3	11	V
negative-going	5		1,5	2,2	3	V
input voltage	10	$\mathrm{~V}_{\mathrm{N}}$	3	4,5	6,3	V
	15		4	6,5	10,1	V

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$
$\left.\begin{array}{|c|c|l|ccc|c|}\hline & \begin{array}{c}\mathbf{V}_{\mathbf{D D}} \\ \mathbf{V}\end{array} & \text { SYMBOL } & \text { TYP. } & \text { MAX. } & \text { TYPICAL EXTRAPOLATION } \\ \text { FORMULA }\end{array}\right]$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 2300 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}^{2}} \\ 9000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2} \\ 20000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{O}}=$ output freq. (MHz) $\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF) $\sum\left(f_{0} C_{L}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Fig. 6 Typical drain current as a function of input voltage; $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 7 Typical drain current as a function of input voltage; $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 9 Typical switching levels as a function of supply voltage $V_{D D} ; T_{a m b}=25^{\circ} \mathrm{C}$.

Fig. 10 Schmitt trigger driven via a high impedance $(R>1 k \Omega)$.

If a Schmitt trigger is driven via a high impedance $(R>1 k \Omega)$ then it is necessary to incorporate a capacitor C of such value that: $\frac{C}{C_{p}}>\frac{V_{D D}-V_{S S}}{V_{H}}$, otherwise oscillation can occur on the edges of a pulse.
C_{p} is the external parasitic capacitance between input and output; the value depends on the circuit board layout.

APPLICATION INFORMATION

Some examples of applications for the HEF40106B are:

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators.

Fig. 11 The HEF40106B used as an astable multivibrator.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

