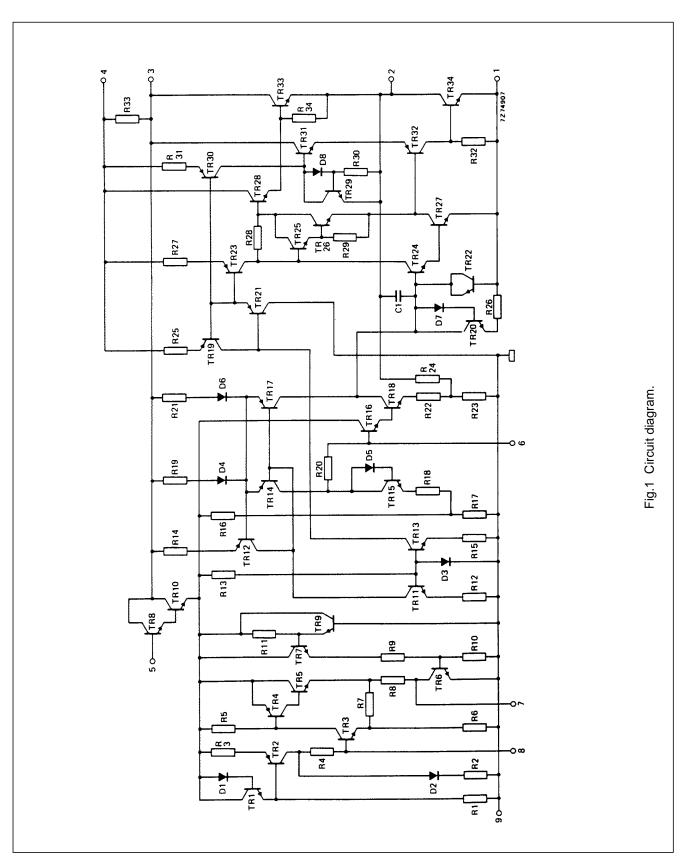

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC01 November 1982

TDA1011

The TDA1011 is a monolithic integrated audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4 Ω load impedance. The device can deliver up to 6 W into 4 Ω at 16 V loaded supply in mains-fed applications. The maximum permissible supply voltage of 24 V makes this circuit very suitable for d.c. and a.c. apparatus, while the very low applicable supply voltage of 3,6 V permits 6 V applications. Special features are:

- single in-line (SIL) construction for easy mounting
- · separated preamplifier and power amplifier
- high output power
- thermal protection
- · high input impedance
- · low current drain
- limited noise behaviour at radio frequencies


QUICK REFERENCE DATA

		2	6 to 20	1/	
Supply voltage range	V _P	3,6 to 20			
Peak output current	I _{OM}	max.	3	А	
Output power at d _{tot} = 10%					
V_P = 16 V; R_L = 4 Ω	Po	typ.	6,5	W	
$V_P = 12 V; R_L = 4 \Omega$	Po	typ.	4,2	W	
$V_P = 9 V; R_L = 4 \Omega$	Po	typ.	2,3	W	
$V_P = 6 V; R_L = 4 \Omega$	Po	typ.	1,0	W	
Total harmonic distortion at $P_o = 1$ W; $R_L = 4 \Omega$	d _{tot}	typ.	0,2	%	
Input impedance					
preamplifier (pin 8)	Z _i	>	100	kΩ	
power amplifier (pin 6)	Z _i	typ.	20	kΩ	
Total quiescent current	I _{tot}	typ.	14	mA	
Operating ambient temperature	T _{amb}	-25 to + 150		°C	
Storage temperature	T _{stg}	-55 to +150		°C	

PACKAGE OUTLINE

9-lead SIL; plastic (SOT110B); SOT110-1; 1996 July 23.

TDA1011

TDA1011

Supply voltage	ystem (IEC 134) V _P	max.	24	V
Supply voltage Yeak output current	-	max.	24	
otal power dissipation	I _{OM} see dera	ting curve Fig		~
Storage temperature	T _{stg}		o + 150	°C
Derating ambient temperature	T _{amb}		o + 150	
A.C. short-circuit duration of load	·amb	201		U
during sine-wave drive; $V_P = 12 V$	t _{sc}	max.	100	hours
2,5 witho heatsi	ut			
0 -25 0 +50	+100 +150 T			

HEATSINK DESIGN

Assume V_P = 12 V; R_L = 4 Ω ; T_{amb} = 60 °C maximum; P_o = 3,8 W.

The maximum sine-wave dissipation is 1,8 W.

The derating of 10 K/W of the package requires the following external heatsink (for sine-wave drive): $R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{150 - 60}{1, 8} = 50 \text{ K/W}.$

Since $R_{th j-tab} = 10$ K/W and $R_{th tab-h} = 1$ K/W, $R_{th h-a} = 50 - (10 + 1) = 39$ K/W.

D.C. CHARACTERISTICS

2 to 6 W au	dio power	amplifier
-------------	-----------	-----------

TDA1011

Supply voltage range Repetitive peak output current	V _P I _{ORN}	1 <		20 V 2 A
Total quiescent current at $V_P = 12 V$	I _{tot}	typ <		14 mA 22 mA
A.C. CHARACTERISTICS T_{amb} = 25 °C; V _P = 12 V; R _L = 4 Ω ; f = 1 kHz unless otherwise specified; see also F	ig.3.			
A.F. output power at d _{tot} = 10% (note 1) with bootstrap:				
$V_P = 16 \text{ V}; \text{ R}_L = 4 \Omega$	Po	typ.	6,5	W
$V_P = 12 \text{ V}; \text{ R}_L = 4 \Omega$	Po	> typ.	3,6 4,2	
$V_P = 9 V; R_L = 4 \Omega$	Po	typ.	2,3	W
$V_P = 6 V; R_L = 4 \Omega$ without bootstrap:	Po	typ.	1,0	W
$V_P = 12 \text{ V}; \text{ R}_L = 4 \Omega$	Po	typ.	3,0	W
Voltage gain:				
preamplifier (note 2)	G _{v1}	typ. 21	23 to 25	dB dB
power amplifier	G _{v2}	typ. 27	29 to 31	dB dB
total amplifier	G _{v tot}	typ. 50	52 to 54	dB dB
Total harmonic distortion at $P_0 = 1,5$ W	d _{tot}	typ. <	0,3 1	% %
Frequency response; –3 dB (note 3) Input impedance:	В	60 Hz	to 15	kHz
preamplifier (note 4)	Z _{i1}	> typ.	100 200	
power amplifier	Z _{i2}	typ.	20	kΩ
Output impedance preamplifier Output voltage preamplifier (r.m.s. value)	Z ₀₁	typ.	1	kΩ
d _{tot} < 1% (note 2) Noise output voltage (r.m.s. value; note 5)	V _{o(rms)}	>	0,7	V
$R_{S} = 0 \ \Omega$	V _{n(rms)}	typ.	0,2	mV
R _S = 10 kΩ	V _{n(rms)}	typ.	0,6	mV

 $R_S = 10 \text{ k}\Omega$

Noise output voltage at f = 500 kHz (r.m.s. value) B = 5 kHz; R_S = 0 Ω <

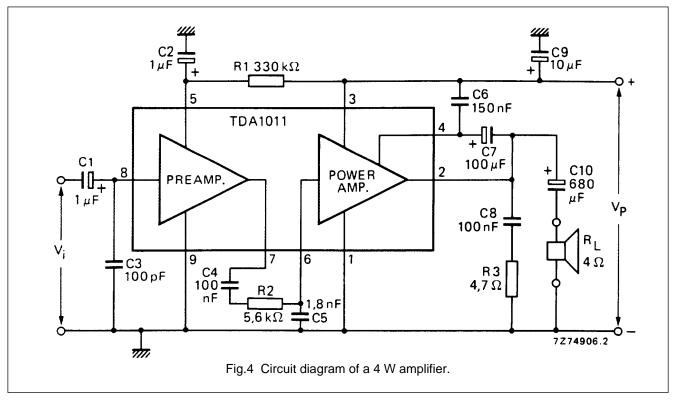
V_{n(rms)} typ.

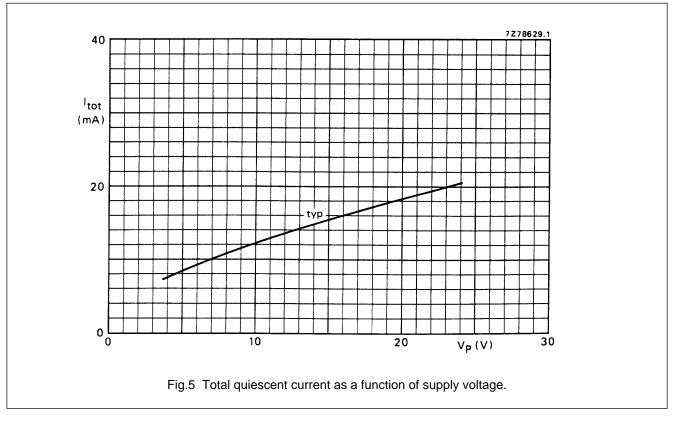
1,4 mV

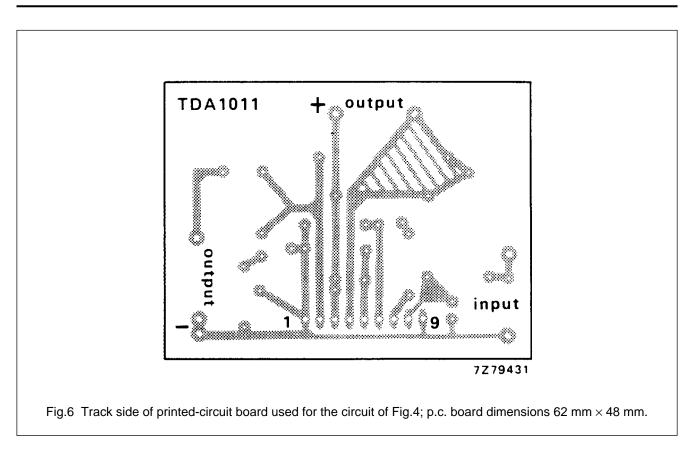
8 μV

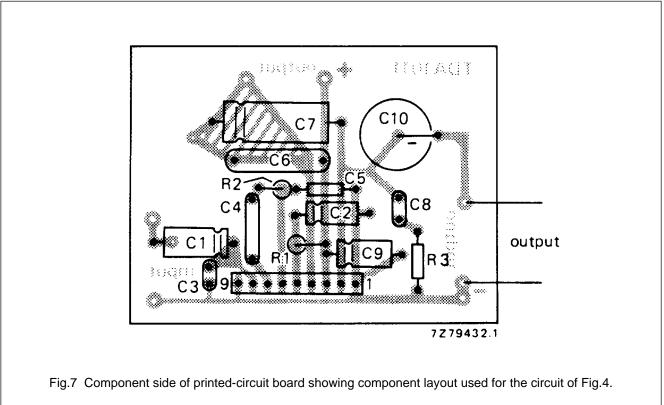
TDA1011

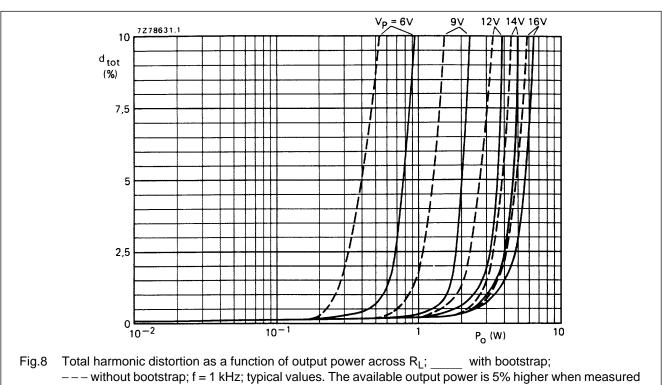
Ripple rejection (note 6)				
f = 1 to 10 kHz	RR	typ.	42	dB
f = 100 Hz; C2 = 1 μF	RR	>	35	dB
Bootstrap current at onset of clipping; pin 4 (r.m.s. value)	I _{4(rms)}	typ.	35	mA


Notes

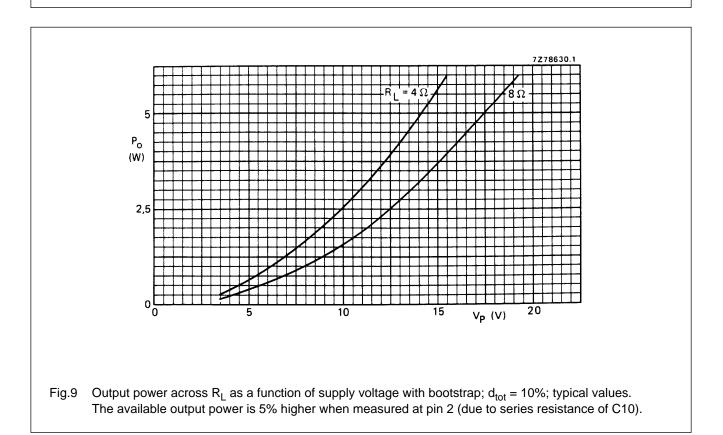

- 1. Measured with an ideal coupling capacitor to the speaker load.
- 2. Measured with a load resistor of 20 k Ω .
- 3. Measured at $P_0 = 1 \text{ W}$; the frequency response is mainly determined by C1 and C3 for the low frequencies and by C4 for the high frequencies.
- 4. Independent of load impedance of preamplifier.
- 5. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
- 6. Ripple rejection measured with a source impedance between 0 and 2 k Ω (maximum ripple amplitude: 2 V).
- 7. The tab must be electrically floating or connected to the substrate (pin 9).


TDA1011

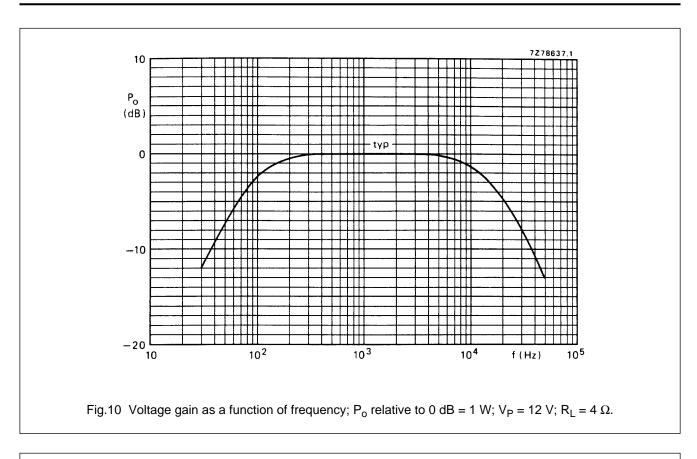

APPLICATION INFORMATION

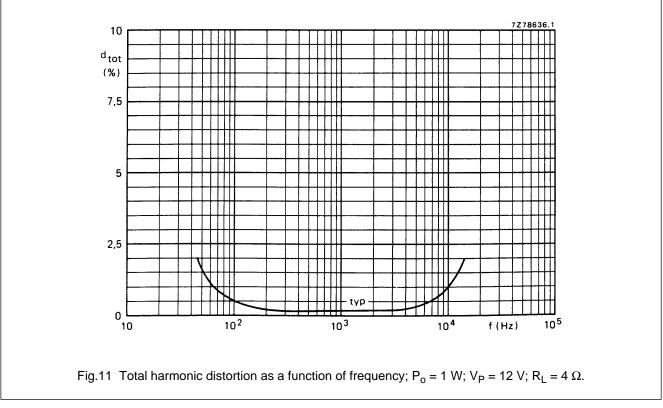


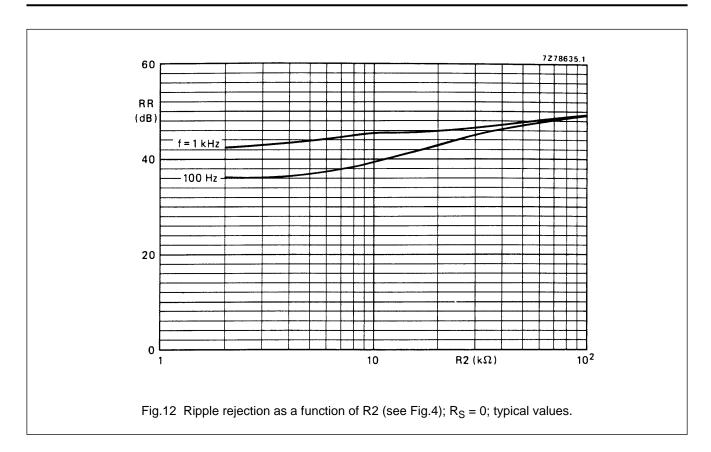
TDA1011

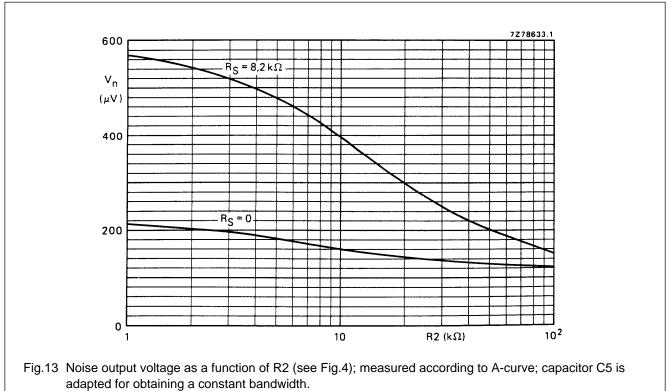


TDA1011




at pin 2 (due to series resistance of C10).




TDA1011

2 to 6 W audio power amplifier

TDA1011