

ECG940

FET INPUT OPERATIONAL AMPLIFIER

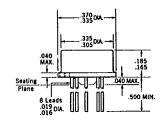
HIGH INPUT IMPEDANCE . . . 1,000,000 MR
NO FREQUENCY COMPENSATION REQUIRED

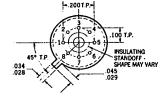
SHORT-CIRCUIT PROTECTION
OFFSET VOLTAGE NULL CAPABILITY

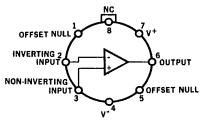
LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
HO LATCH UP

The ECG940 is a high performance FET input operational amplifier constructed on a single silicon chip. It is intended for a wide range silicon chip. It is intended for a wide range of analog applications where very high input impedance is required and features very low input offset current and very low input bias current. High slew rate, high common mode voltage range and absence of "latch up" make the ECG940 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in active voirages provide superior performance in active filters, integrators, summing amplifiers, sample and holds, transducer amplifiers, and other general feedback applications. The ECG940 is short circuit protected and has the same pin configuration as the popular ECG941 operational amplifier. No external components for frequency, components for frequency compensation are required as the internal 6 dB/octave roll-off insures stability in closed loop applications.

Absolute Maximum Ratings

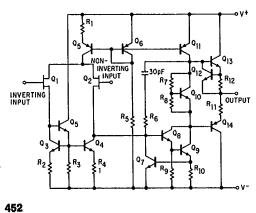

Internal Power Dissipation (Note 1)
500 mW
Differential Input Voltage±30 V
Input Voltage (Note 2)±15 V
Voltage Between Offset Null and V+
±0.5 V
Storage Temperature Range
65°C to +150°C
Operating Temperature Range
0°C to +70°C
Lead Temperature (Soldering, 60 Seconds)
300°C
Output Short-Circuit Duration (Note 3)
Indefinite


Supply Voltage..... ±22 V


NOTES:

- (1) Rating applies for ambient temperatures to +70°C. (2) For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.
- (3) Short circuit may be to ground or either supply. Rating applies to +70°C ambient temperature.

ECG940



NOTE: PIN 4 CONNECTED TO CASE

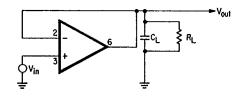
EQUIVALENT CIRCUIT

PHILIPS E C G INC

17E D

1	Ы	Γ.	С	\neg		\Box	П	п	п	п	7	1	F	
	_	0	J	_	. 1	_	0	ш	ш	ш	\mathbf{a}	ь	ь	

4 T-79-15


ELECTRICAL	CHARACTERISTICS	$(V_S = \pm 15 V,$	$T_C = 25^{\circ}C$ unless	otherwise specified)

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage	$R_S \le 100 \text{ k}\Omega$		30		m∀
Input Offset Current			60		pΑ
Input Current (either Input)			0.1	2.0	nA
Input Resistance			1,000,000		MΩ
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_{out} = \pm 10 V$		1,000,000		
Output Resistance			75		Ω
Output Short-Circuit Current			20		mA
Supply Current			4.2	8.0	mA
Power Consumption			126	240	mW
Slew Rate			6.0		V/μs
Unity Gain Bandwidth			1.0		MHz
Transient Response (Unity Gain)	$\mathrm{C_L} \leq 100~\mathrm{pF},~\mathrm{R_L} = 2~\mathrm{k}\Omega,~\mathrm{V_{in}} = 100~\mathrm{mV}$				
Risetime	·		300		пз
Overshoot			10		%
The following specifications apply fo	r 0°C ≤ T _A ≤ +70°C:				
Input Voltage Range			±12		٧
Common Mode Rejection Ratio			80		dB
Supply Voltage Rejection Ratio			70		μV/V
Large Signal Voltage Gain			500,000		
Output Voltage Swing	$R_i \ge 10 \text{ k}\Omega$	±12	±14		٧
· · ·	$R_1 \geq 2 k\Omega$	±10	±13		V
Input Offset Voltage	•		30		m۷
Input Offset Current			60		pΑ
Input Current (either input)			1.1	10	пA

VOLTAGE OFFSET NULL CIRCUIT

2

TRANSIENT RESPONSE TEST CIRCUIT

453

ECG940