SN54HC7022, SN74HC7022 OCTAL COUNTERS/DIVIDERS WITH POWER-UP CLEAR

D2804, MARCH 1984-REVISED SEPTEMBER 1987

- Carry-Out Output for Cascading
- Divide-by-N Counting
- DC Clock Input Circuit Allows Slow Rise Times
- Power-Up Reset
- Pin-Out Compatible with 'HC4022
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC7022 is a four-stage divide-by-8 Johnson counter with eight decoder outputs and a carry-out bit. High-speed operation and spike-free outputs are obtained by use of the Johnson octal counter configuration.

The eight decoder outputs are normally low and go high only at their respective octal time periods. A high signal on CLR asynchronously clears the octal counter and sets the carry output and Y0 high. With CLKEN low, the count is advanced on a low-to-high transition at CLK. Alternatively, if CLK is high, the count is advanced on a high-to-low transition at CLKEN. Each decoded output remains high for one full clock cycle. The carry output C0 is high while Y0, Y1, Y2, or Y3 is high, then is low while Y4, Y5, Y6, or Y7 is high.

This part is similar to the 'HC4022; the main difference is that it includes a power-up-clear circuit to reset the counter during the power-up of the device. The active-low open-drain clear output, CLROUT, can be used to clear or rest external circuitry. The pulse duration of the power-up reset circuit can be controlled with an external capacitor Cext connected to pin XCAP. If XCAP is connected to VCC, the power-up reset function is bypassed.

The SN54HC7022 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC7022 is characterized for operation from -40°C to 85°C.

SN54HC7022 . . . J PACKAGE SN74HC7022 . . . DW OR N PACKAGE (TOP VIEW) Y1 1 1 16 VCC Y0 🛮 2 15 CLR Y2 🛮 3 14 CLK Y5 ∏4 13 CLKEN Y6 🗍 5 12 CO XCAP 6 11∏ Y4 Y3 🛮 7 10 TY7 GND Ta 9 TI CLROUT

\$N54HC7022 √. FK PACKAGE

NC-No internal connection

logic symbol†

 $^\dagger \text{This}$ symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for DW, J, and N packages.

PRODUCTION DATA documents centain information current as of publication data. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright @ 1984, Texas Instruments Incorporated

2-751

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

logic diagram (positive logic)

Note: The output of each threshold detector is logically high until the input voltage exceeds the threshold level, typically 1.7 volts. Pin numbers shown are for DW, J, and N packages.

2-752

absolute maximum ratings over operating free-air temperature range t

Supply voltage, VCC0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})
Output clamp current, IOK (VO < 0 or VO > VCC)
Continuous output current, IQ (VO = 0 to VCC)
Continuous output current, IO (VO = 0 to VCC)
Continuous current through VCC or GND pins
Lead temperature 1,6 mm (1/16 in) from case for 60 s: FK or J package
Lead temperature 1,6 mm (1/16 in) from case for 10 s: DW or N package
Storage temperature range

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			SN54HC7022			SN74HC7022			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	ONII
Voc	Supply voltage		2	5	6	2	5	6	V
	Cappity Contage	V _{CC} = 2 V	1.5			1.5			
	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V
		V _{CC} = 6 V	4.2			4.2			
VIL		V _{CC} = 2 V	0		0.3	0		0.3	
	Low-level input voltage	V _{CC} = 4.5 V	0		0.9	0		0.9	V
		V _{CC} = 6 V	. 0		1.2	0		1.2	
Vı	Input voltage		0		Vcc	0		Vçc	V
Vo	Output voltage		0		Vcc	0		Vcc	
t _t		V _{CC} = 2 V	0		1000	0		1000	Į
	Input transition (rise and fall) times	V _{CC} = 4.5 V	0		500	0		500	ns
	inper incident in the area of the control of the co	V _{CC} = 6 V	0		400	0		400	
TA	Operating free-air temperature		- 55		125	-40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		vcc	TA = 25°C			SN54HC7022		SN74HC7022		UNIT
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	1.9	1.998		1.9		1.9		
voн	$V_I = V_{IH}$ or V_{IL} , $I_{OH} = -20 \mu A$ $V_I = V_{IH}$ or V_{IL} , $I_{OH} = -4 \text{ mA}$	4.5 V	4.4	4.499		4.4		4.4		V
(Totem-pole		6 V	5.9	5.999		5.9		5.9		
outputs)		4.5 V	3.98	4.30		3.7		3.84		
	$V_I = V_{IH}$ or V_{IL} , $I_{OH} = -5.2$ mA	6 V	5.48	5.80		5.2		5.34		
¹ OH (Open-drain outputs)	$V_{I} = V_{IH}$ or V_{IL} , $V_{O} = V_{CC}$	6 V		0.01	0.5		10		5	μΑ
	V _I = V _{IH} or V _{IL} , I _{OL} = 20 μA	2 V		0.002	0.1		0.1	ł	0.1	
		4.5 V		0.001	0.1		0.1		0.1	
VOL		6 V		0.001	0.1		0.1		0.1	V
-01	VI = VIH or VIL, IOL = 4 mA	4.5 V		0.17	0.26		0.4	i	0.33	
	V _I = V _{IH} or V _{IL} , I _{OL} = 5.2 mA	6 V		0.15	0.26	Ţ	0.4		0.33	
4	V _I = V _{CC} or 0	6 V		±0.1	± 100		± 1000	Ι	± 1000	nΑ
lcc	$V_I = V_{CC}$ or 0, $I_{O} = 0$	6 V			8		160		80	μΑ
C _i	-1 -00	2 to 6 V		3	10		10		10	pF

2-754

SN54HC7022, SN74HC7022 OCTAL COUNTERS/DIVIDERS WITH POWER-UP CLEAR

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

				TA = 25°C		SN54HC7022		SN74HC7022		UNIT
			Vcc	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	0	6	0	4.2	0	5	
fclock	Clock frequency	CLK [†] or CLKEN [‡]	4.5 V	0	31	0	21	0	25	MHz
			6 V	0	36	0	25	0	29	
		OLK bink on to at an	2 V	80		120		100		
		CLK high or low † or	4.5 V	16		24		20		
		CLKEN high or low [‡]	6 V	14		20		17		
tw	Pulse duration		2 V	80		120		100		ns
••		CLR high	4.5 V	16		24		20		
			6 V	14		20		17		
		CLKEN low before	2 V	50		75		63		
		CLK†† or CLK high	4.5 V	10		15		13		
	Setup time	before CLKEN↓‡	6V	9		13		11		
t _{su}		0.51	2 V	50		75		63		ns
		CLR inactive before CLK†‡CLKEN↓‡	4.5 V	10		15		13		
			6 V	9		13		11		
	Hold time	CLKEN low after	2 V	5		5		5		
th		CLK†† or CLK	4.5 V	5		5		5		ns
		high after CLKEN↓‡	6∨	5		5		5		

[†]These conditions apply if clocking is being performed via the CLK input.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted), $C_L = 50 \text{ pF}$ (see Note 1)

DA DA MAETED	FROM		vcc	T _A = 25°C			SN54H	IC7022	SN74H		
PARAMETER	(INPUT)			MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	6	10		4.2		5		
tmax			4.5 V	31	50		21		25		MHz
			6 V	36	55		25		29		
· -			2 V		115	230		343		290	
t _{pd}	CLK	Any Y or CO	4.5 V		23	46		69		58	ns
•			6 V		20	39		58		49	
			2 V		125	250		373		315	
tpd	CLKEN	Any Y or CO	4.5 V		25	50		75		63	ns
· .			6 V		21	43		63		54	
			2 V		115	230		343		290	
t _{pd}	CLR	Any Y	4.5 V		23	46		69		58	ns
			6 V		20	39		58		49	
			2 V		115	230		343		290	
tPLH	CLR	со	4.5 V		23	46		69		58	ns
		İ	6 V		20	39		58		49	
			2 V		38	75		110		95	
tt		Any output	4.5 V]	8	15		22		19	ns
			6 V	i	6	13	1	19		16	

Note 1: Load circuits and voltage waveforms are shown in Section 1.

Power dissipation capacitance

 C_{pd}

No load, TA = 25°C

2-755

60 pF typ

[‡]These conditions apply if clocking is being performed via the CLKEN input.