4-Bit Arithmetic Logic Unit

General Description

The 'F382 performs three arithmetic and three logic operations on two 4-bit words, A and B. Two additional Select input codes force the Function outputs LOW or HIGH. An Overflow output is provided for convenience in twos complement arithmetic. A Carry output is provided for ripple expansion. For high-speed expansion using a Carry Lookahead Generator, refer to the 'F381 data sheet.

Commercial	Package Number	Package Description
74F382PC	N20A	20-Lead (0.300" Wide) Molded Dual-In-Line
74F382SC (Note 1)	M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
74F382SJ (Note 1)	M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ

Note 1: Devices also available in $13^{\prime \prime}$ reel. Use suffix $=$ SCX and SJX.

Logic Symbols

TL/F/9529-6

TL/F/9529-3

Features

- Performs six arithmetic and logic functions

■ Selectable LOW (clear) and HIGH (preset) functions

- LOW input loading minimizes drive requirements
- Carry output for ripple expansion
- Overflow output for twos complement arithmetic

Unit Loading/Fan Out

Pin Names	Description	74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{A}_{0}-\mathrm{A}_{3}$	A Operand Inputs	1.0/4.0	$20 \mu \mathrm{~A} /-2.4 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{3}$	B Operand Inputs	1.0/4.0	$20 \mu \mathrm{~A} /-2.4 \mathrm{~mA}$
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Function Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
C_{n}	Carry Input	1.0/5.0	$20 \mu \mathrm{~A} /-3.0 \mathrm{~mA}$
$\mathrm{C}_{\mathrm{n}+4}$	Carry Output	50/33.3	-1 mA/20 mA
OVR	Overflow Output	50/33.3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{F}_{0}-\mathrm{F}_{3}$	Function Outputs	50/33.3	-1 mA/20 mA

Functional Description

Signals applied to the Select inputs $\mathrm{S}_{0}-\mathrm{S}_{2}$ determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Truth Table. The circuit performs the arithmetic functions for either active HIGH or active LOW operands, with output levels in the same convention. In the Subtract operating modes, it is necessary to force a carry (HIGH for active HIGH operands, LOW for active LOW operands) into the C_{n} input of the least significant package. Ripple expansion is illustrated in Figure 1. The overflow output OVR is the Exclu-sive-OR of $\mathrm{C}_{n}+3$ and $\mathrm{C}_{\mathrm{n}}+4$; a HIGH signal on OVR indicates overflow in twos complement operation. Typical delays for Figure 1 are given in Figure 2.

Function Select Table

Select			Operation
	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	
L	L	L	Clear
H	L	L	B Minus A
L	H	L	A Minus B
H	H	L	A Plus B
L	L	H	A \oplus B
H	L	H	A + B
L	H	H	AB
H	H	H	Preset

H $=$ HIGH Voltage Level
L = LOW Voltage Level

TL/F/9529-5
FIGURE 1. 16-Bit Ripply Carry ALU Expansion

Path Segment	Toward \mathbf{F}	Output $\mathbf{C}_{\mathbf{n}}+\mathbf{4}$, OVR
A_{i} or B_{i} to $\mathrm{C}_{\mathrm{n}}+4$	6.5 ns	6.5 ns
C_{n} to $\mathrm{C}_{\mathrm{n}}+4$	6.3 ns	6.3 ns
C_{n} to $\mathrm{C}_{\mathrm{n}}+4$	6.3 ns	6.3 ns
C_{n} to F	8.1 ns	-
C_{n} to $\mathrm{C}_{\mathrm{n}}+4$, OVR	-	8.0 ns
Total Delay	27.2 ns	27.1 ns

FIGURE 2. 16-Bit Delay Tabulation

4

Absolute Maximum Ratings (Note 1)	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias Plastic	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
V_{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE® Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{IOL}^{\text {(mA) }}$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.	
Note 2: Either voltage limit or current limit is	sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	
$\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Commercial	
\quad Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics over Operating Temperature Range unless otherwise specified

Symbol	Parameter		74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	74F 10\% V CC			0.5	V	Min	$\mathrm{lOL}=20 \mathrm{~mA}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current	74F			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	74F			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
${ }^{\text {ICEX }}$	Output HIGH Leakage Current	74F			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\mathrm{IOD}}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -2.4 \\ & -3.0 \end{aligned}$	mA	Max	$\begin{aligned} \mathrm{V}_{\mathrm{IN}} & =0.5 \mathrm{~V}\left(\mathrm{~S}_{0}-\mathrm{S}_{2}\right) \\ \mathrm{V}_{\mathrm{IN}} & =0.5 \mathrm{~V}\left(\mathrm{~A}_{0}-\mathrm{A}_{3}, \mathrm{~B}_{0}-\mathrm{B}_{3}\right) \\ \mathrm{V}_{\mathrm{IN}} & =0.5 \mathrm{~V}\left(\mathrm{C}_{\mathrm{n}}\right) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICC	Power Supply Current			54	81	mA	Max	

AC Electrical Characteristics

Symbol	Parameter	74F			74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay C_{n} to F_{i}	$\begin{array}{r} 3.0 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 8.1 \\ & 5.7 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 13.0 \\ 9.0 \\ \hline \end{gathered}$	ns
$t_{\text {PLH }}$	Propagation Delay Any A or B to Any F	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.4 \\ 8.2 \\ \hline \end{gathered}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.5 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 17.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{i} to F_{i}	$\begin{aligned} & 6.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.0 \\ 8.2 \\ \hline \end{array}$	$\begin{aligned} & 20.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.5 \\ & 17.5 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{i} or B_{i} to $C_{n}+4$	$\begin{aligned} & \hline 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.5 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay S_{i} to OVR or $\mathrm{C}_{\mathrm{n}}+4$	$\begin{aligned} & 7.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 17.5 \\ 14.5 \\ \hline \end{array}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay C_{n} to $\mathrm{C}_{\mathrm{n}}+4$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{gathered} 9.0 \\ 10.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay C_{n} to OVR	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.1 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{i} or B_{i} to OVR	$\begin{aligned} & 7.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 11.5 \end{aligned}$	ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

20-Lead (0.300 " Wide) Molded Dual-In-Line Package (P)
NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

