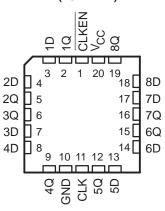
- SCBS156B FEBRUARY 1991 REVISED JULY 1994
- State-of-the-Art *EPIC*-II*B*[™] BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce)
 1 V at V_{CC} = 5 V, T_A = 25°C
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages, Ceramic Chip Carriers (FK), and Plastic (N) and Ceramic (J) DIPs

description


The 'ABT377 are 8-bit positive-edge-triggered D-type flip-flops with a clock (CLK) input. They are particularly suitable for implementing buffer and storage registers, shift registers, and pattern generators.

Data (D) input information that meets the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if the common clock-enable (CLKEN) input is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the buffered clock (CLK) input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at CLKEN.

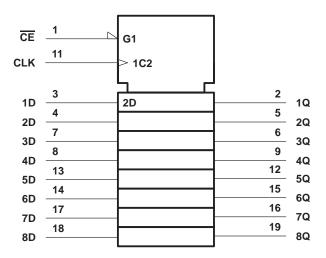
SN54ABT377 J PACKAGE
SN74ABT377 DB, DW, OR N PACKAGE
(TOP VIEW)

CLKEN	1	U ₂₀] V _{CC}
1Q [2	19] 8Q
1D [3	18	8D
2D [4	17]7D
2Q [5	16] 7Q
3Q [6	15] 6Q
3D [7	14] 6D
4D [8	13] 5D
4Q [9	12] 5Q
GND [10	11] CLK

SN54ABT377 ... FK PACKAGE (TOP VIEW)

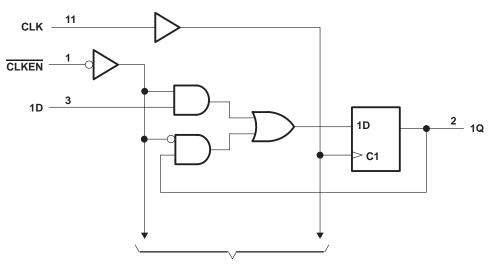
The SN74ABT377 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT377 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT377 is characterized for operation from -40° C to 85° C.


(each flip-flop)									
	OUTPUT								
CLKEN	CLK	D	Q						
Н	Х	Х	Q ₀						
L	\uparrow	Н	н						
L	\uparrow	L	L						
Х	H or L	Х	Q ₀						

FUNCTION TABLE

EPIC-IIB is a trademark of Texas Instruments Incorporated.


SCBS156B - FEBRUARY 1991 - REVISED JULY 1994

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

SCBS156B - FEBRUARY 1991 - REVISED JULY 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1) Voltage range applied to any output in the high state or power-off Current into any output in the low state, I_O : SN54ABT377 SN74ABT377 Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$) Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2)	-0.5 V to 7 V state, V _O
Storage temperature range	DW package 1.6 W N package 1.3 W

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils, except for the N package, which has a trace length of zero. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

recommended operating conditions (see Note 3)

		SN54A	BT377	SN74A	UNIT	
		MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	VCC	0	VCC	V
IOH	High-level output current		-24		-32	mA
IOL	Low-level output current		48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate		5		5	ns/V
TA	Operating free-air temperature	-55	125	-40	85	°C

NOTE 3: Unused or floating inputs must be held high or low.

SCBS156B - FEBRUARY 1991 - REVISED JULY 1994

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			Т	T _A = 25°C			SN54ABT377		BT377	UNIT
FARAMETER				MIN	түр†	MAX	MIN	MAX	MIN	MAX	UNIT
VIK	V _{CC} = 4.5 V,	lı = -18 mA				-1.2		-1.2		-1.2	V
	$V_{CC} = 4.5 V,$	$I_{OH} = -3 \text{ mA}$		2.5			2.5		2.5		
Vari	$V_{CC} = 5 V,$	$I_{OH} = -3 \text{ mA}$		3			3		3		V
VOH		$I_{OH} = -24 \text{ mA}$		2			2				v
	$V_{CC} = 4.5 V$ $I_{OH} = -32 mA$			2*					2		
		I _{OL} = 48 mA				0.55		0.55			v
V_{OL} $V_{CC} = 4.5 V$		I _{OL} = 64 mA				0.55*				0.55	V
lj	V _{CC} = 5.5 V,	$C = 5.5 \text{ V}, V_{I} = V_{CC} \text{ or GND}$				±1		±1		±1	μΑ
l _{off}	$V_{CC} = 0,$	VI or VO \leq 4.5 V				±100				±100	μΑ
ICEX	V _{CC} = 5.5 V,	V _O = 5.5 V	Outputs high			50		50		50	μΑ
۱ ₀ ‡	V _{CC} = 5.5 V,	V _O = 2.5 V	-	-50	-100	-180	-50	-180	-50	-180	mA
	V _{CC} = 5.5 V,	I _O = 0,	Outputs high		1	250		250		250	μΑ
$V_{I} = V_{CC} \text{ or GNI}$		ND	Outputs low		24	30		30		30	mA
∆I _{CC} §	V _{CC} = 5.5 V, Other inputs at	One input at 3.4 V, V _{CC} or GND				1.5		1.5		1.5	mA
Ci	V _I = 2.5 V or 0.	5 V			3						pF

* On products compliant to MIL-STD-883, Class B, this parameter does not apply.

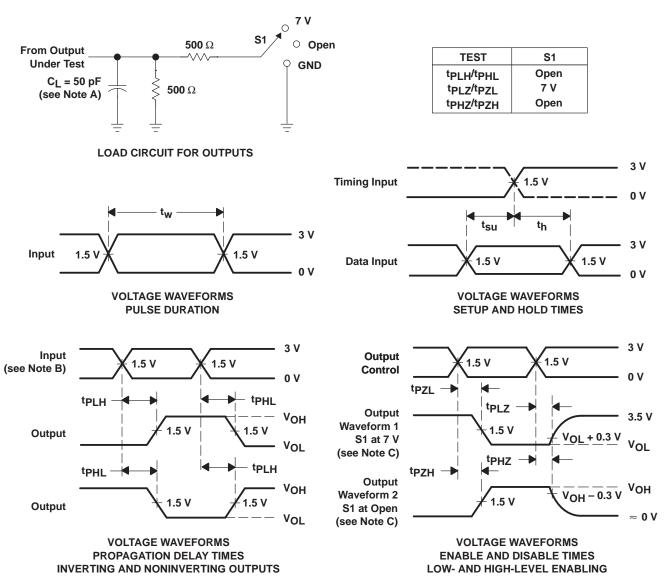
[†] All typical values are at V_{CC} = 5 V.

[‡]Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

				= 5 V, 25°C	SN54A	BT377	SN74A	BT377	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
fclock	Clock frequency		0	150	0	150	0	150	MHz	
tw	Pulse duration	CLK high or low	3.3		3.3		3.3		ns	
		Data high or low	2		2.5		2			
t _{su}	Setup time before CLK [↑]	CLKEN high or low	3		3		3		ns	
the start of the sector of the	Data high or low	1.8¶		1.8¶		1.8¶				
Ч	t _h Hold time after CLK↑	CLKEN high or low	1.8 [¶]		1.8 [¶]		1.8 [¶]		ns	


¶ This data sheet limit may vary among suppliers.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V T	CC = 5 V A = 25°C	, ,	SN54A	BT377	SN74A	BT377	UNIT
	(INPOT)	(001P01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
fmax			150			150		150		MHz
^t PLH	CLK	Q	2.2	4.5	6	2.2	7	2.2	6.5	ns
^t PHL	CLK	Q	3.1	5.3	6.8	2	7.6	3.1	7.3	115

SCBS156B - FEBRUARY 1991 - REVISED JULY 1994

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated