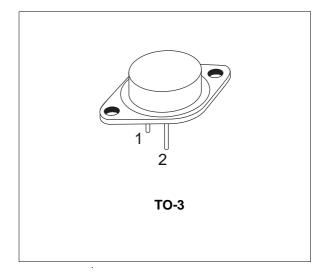
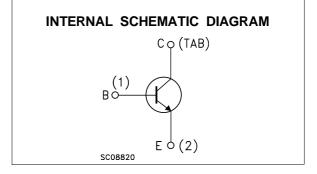


BUR51


HIGH CURRENT NPN SILICON TRANSISTOR


SGS-THOMSON PREFERRED SALESTYPE

NPN TRANSISTOR

DESCRIPTION

The BUR51 is a silicon multiepitaxial planar NPN transistor in modified Jedec TO-3 metal case, intented for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{СВО}	Collector-Base Voltage $(I_E = 0)$	300	V	
Vceo	Collector-Emitter Voltage (I _B = 0)	200	V	
Vebo	Emitter-Base Voltage (I _C = 0)	10	V	
Ic	Collector Current	60	Α	
I _{CM}	Collector Peak Current (t _p = 10 ms)	80	Α	
Ι _Β	Base Current	16	Α	
P _{tot}	Total Dissipation at $T_c \le 25$ °C	350	W	
T _{stg}	Storage Temperature	-65 to 200	°C	
Tj	Max. Operating Junction Temperature	200	°C	

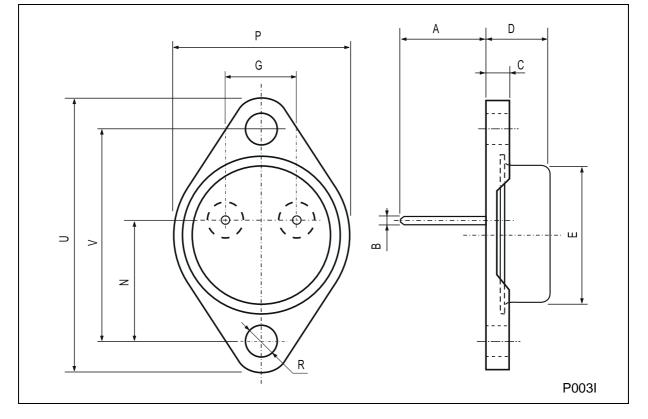
June 1997

BUR51

THERMAL DATA

R _{thj-case} Thermal Resistance Junction-case	Max	0.5	°C/W	
--	-----	-----	------	--

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)


Symbol	Parameter	Test C	Min.	Тур.	Max.	Unit	
І _{сво}	Collector Cut-off Current (I _E = 0)	V _{CB} = 300 V V _{CB} = 300 V	T _{case} = 125 ^o C			0.2 2	mA mA
ICEO	Collector Cut-off Current ($I_B = 0$)	V _{CE} =200 V				1	mA
I _{EBO}	Emitter Cut-off Current (Ic = 0)	V _{EB} = 7 V				0.2	μA
$V_{CEO(sus)^*}$	Collector-Emitter Sustaining Voltage	I _C = 200 mA		200			V
Vebo	Emitter-base Voltage (I _C = 0)	I _E = 10 mA		10			V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	I _C = 30 A I _C = 50 A	I _B = 2 A I _B = 5 A		0.9	1 1.5	V V
V _{BE(sat)} *	Base-emitter Saturation Voltage	I _C = 30 A I _C = 50 A	I _B = 2 A I _B = 5 A		1.55	1.8 2	V V
h _{FE} *	DC Current Gain	I _C = 5 A I _C = 50 A	V _{CE} = 4 V V _{CE} = 4 V	20 15		100	
I _{s/b}	Second Breakdown Collector Current	Vce = 20 V	t = 1 s	17.5			A
f _T	Transition-Frequency	I _C = 1 A f = 1 MHz	$V_{CE} = 5 V$	10	16		MHz
t _{on}	Turn-on Time	IC = 50 A V _{CC} = 100 V	I _{B1} = 5 A		0.35	1	μs
ts	Storage Time	IC = 50 A	I _{B1} = 5 A		0.9	2	μs
t _f	Fall Time	I _{B2} = -5 A	$V_{CC} = 100 V$		0.24	0.6	μs
	Clamped E _{s/b} Collector Current	$V_{clamp} = 200 V$	L = 500 μH	50			A

* Pulsed: Pulse duration = $300 \,\mu$ s, duty cycle 1.5 %

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	11	11.7	13.1	0.433	0.461	0.516	
В	1.45	1.5	1.6	0.057	0.059	0.063	
С	2.7		2.92	0.106		0.115	
D	8.9		9.4	0.350		0.370	
E	19		20	0.748		0.787	
G	10.7	10.9	11.1	0.421	0.429	0.437	
Ν	16.5	16.9	17.2	0.650	0.665	0.677	
Р	25		26	0.984		1.024	
R	3.88		4.2	0.153		0.165	
U	38.5		39.3	1.516		1.547	
V	30	30.14	30.3	1.181	1.187	1.193	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

