
- Bi-MOS Technology With TTL and CMOS Compatibility
- Meets or Exceeds the Requirements of ANSI EIA/TIA-232-E and ITU Recommendation V.28
- Very Low Quiescent Current . . . 95 μA Typ V_{CC±} = ±12 V
- Current-Limited Outputs . . . 10 mA Typ
- CMOS-and TTL-Compatible Inputs
- On-Chip Slew Rate Limited to 30 V/μs max
- Flexible Supply Voltage Range
- Characterized at V_{CC±} of ±4.5 V and ±15 V
- Functionally Interchangeable With Texas Instruments SN75188, Motorola MC1488, and National Semiconductor DS14C88

D, DB[†], OR N PACKAGE (TOP VIEW)

† The DB package is only available left-end taped and reeled, i.e., order device SN75C188DBLE.

description

The SN75C188 is a monolithic, low-power, quadruple line driver that interfaces data terminal equipment with data communications equipment. This device is designed to conform to ANSI Standard EIA/TIA-232-E.

An external diode in series with each supply-voltage terminal is needed to protect the SN75C188 under certain fault conditions to comply with EIA/TIA-232-E.

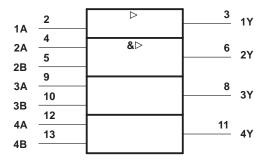
The SN75C188 is characterized for operation from 0°C to 70°C.

Function Tables

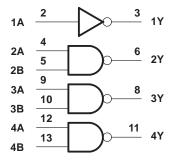
DRIVER 1							
В	Y						
Н	L						
L	Н						

DRIVERS 2 - 4

Α	В	Υ
Н	Н	L
L	X	Н
Х	L	Н

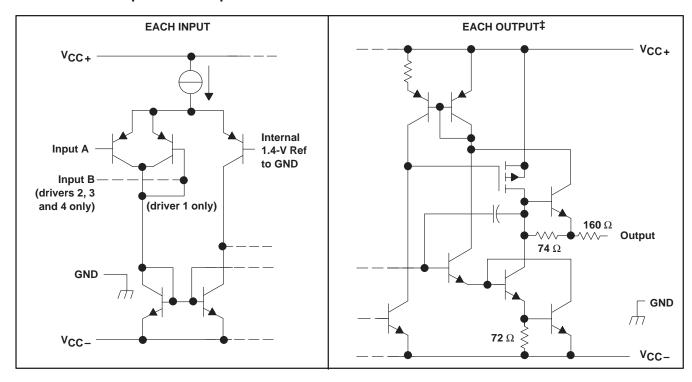

H = high level, L = low level, X = don't care

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic diagram (positive logic)

positive logic

 $Y = \overline{A} (driver 1)$ $Y = \overline{AB} \text{ or } \overline{A} + \overline{B} (drivers 2 \text{ through 4})$

schematics of inputs and outputs

[‡] All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC+} (see Note 1)	15 V
Supply voltage, V _{CC} (see Note 1)	
Input voltage range, V _I	V _{CC} to V _{CC+}
Output voltage range, VO	V_{CC-} -6 V to V_{CC+} +6 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
DB	525 mW	4.2 mW/°C	336 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}	4.5	12	15	V
Supply voltage, V _{CC} -	-4.5	-12	-15	V
Input voltage, V _I	V _{CC} -+2		VCC+	V
High-level Input voltage, VIH	2			V
Low-level Input voltage, V _{IL}			0.8	V
Operating free-air temperature, T _A	0		70	°C

electrical characteristics over operating free-air temperature range, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -12 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CONDIT	MIN	TYP [†]	MAX	UNIT	
VOH High-level output voltage		V _{II} = 0.8 V,	$R_1 = 3 k\Omega$	V _{CC+} = 5 V, V _{CC-} = -5 V	4			V
VOH	r ngr-lever output voltage	VIL = 0.0 V,	N_ = 3 K22	V _{CC+} = 12 V, V _{CC-} = -12 V	10			V
Voi	Low-level output voltage	V _{IH} = 2 V,	$R_1 = 3 k\Omega$	V _{CC+} = 5 V, V _{CC-} = -5 V			-4	٧
VOL (see Note 2)		VIH - 2 v,	N_ = 3 N22	V _{CC+} = 12 V, V _{CC-} = -12 V			-10	v
lН	High-level input current	V _I = 5 V					10	μΑ
IIL	Low-level input current	V _I = 0					-10	μΑ
IOS(H)	High-level short-circuit output current‡	V _I = 0.8 V,	VO = 0 or VCC-		-5.5	-10	-19.5	mA
IOS(L)	Low-level short-circuit output current‡	V _I = 2 V,	$V_O = 0$ or V_{CC} +			10	19.5	mA
rO	Output resistance, power off	$V_{CC+} = 0$,	V _{CC} -= 0,	$V_I = -2 V \text{ to } 2 V$	300			Ω
laa	Supply current from V _{CC+}	V _{CC+} = 5 V, No load	V _{CC} -=-5 V,	All inputs at 2 V or 0.8 V		90	160	μA
ICC+	Supply carrent from vCC+	V _{CC+} = 12 V, No load	V _{CC} -=-12 V,	All inputs at 2 V or 0.8 V		95	160	μΑ
loo	Supply current from Voc	V _{CC+} = 5 V, No load	V _{CC} -=-5 V,	All inputs at 2 V or 0.8 V		-90	-160	
Icc-	Supply current from V _{CC} _	V _{CC+} = 12 V, No load	V _{CC} -=-12	All inputs at 2 V or 0.8 V		-95	-160	μА

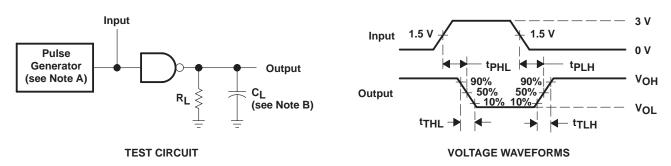
[†] All typical values are at $T_A = 25$ °C.

NOTE 2: The algebraic convention, in which the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only; e.g., if $-4\ V$ is a maximum, the typical value is a more negative voltage.

switching characteristics, V_{CC+} = 12 V, V_{CC-} = -12 V, T_A = 25°C

	PARAMETER	TEST CON	MIN	TYP	MAX	UNIT	
tPLH	Propagation delay time, low- to high-level output§	$R_L = 3 k\Omega$,	C _L = 15 pF,			3	μs
tPHL	Propagation delay time, high- to low-level output§	See Figure 1				3.5	μs
tTLH	Transition time, low- to high-level output			0.53		3.2	μs
^t THL	Transition time, high- to low-level output			0.53		3.2	μs
tTLH	Transition time, low- to high-level output#	$R_L = 3 k\Omega$ to $7 k\Omega$,	C _L = 2500 pF,		1.5		μs
^t THL	Transition time, high- to low-level output#	See Figure 1			1.5		μs
SR	Output slew rate§	$R_L = 3 k\Omega \text{ to } 7 k\Omega$	C _L = 15 pF	6	15	30	V/μs

[§] Measured at the 50% level



[‡] Not more than one output should be shorted at a time.

[¶] Measured between the 10% and 90% points on the output waveform

[#] Measured between the 3-V and -3-V points on the output waveform (EIA/TIA-232-E conditions), all unused inputs tied either high or low

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: t_W = 25 μ s, PRR = 20 kHZ, Z_O = 50 Ω , t_f = t_f \leq 50 ns.

B. C_L includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms

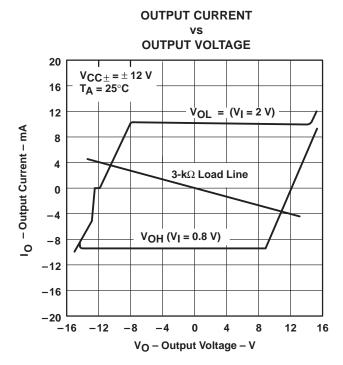
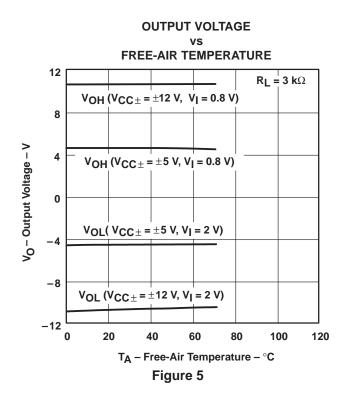
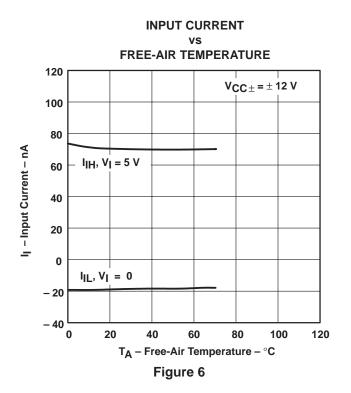
TYPICAL CHARACTERISTICS

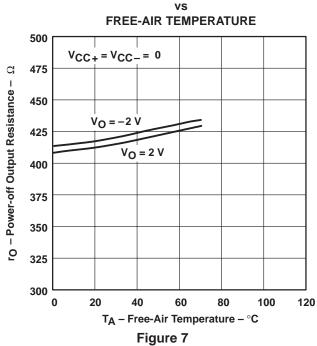
VOLTAGE TRANSFER CHARACTERISTICS 15 $V_{CC\pm} = \pm 15 V$ V_{CC±} = ±12 V 12 $V_{CC\pm} = \pm 9 V$ 9 V_O - Output Voltage - V $V_{CC\pm} = \pm 5 V$ 6 3 0 $V_{CC\pm} = \pm 5 V$ -3-6 $V_{CC\pm} = \pm 9 V$ $V_{CC\pm} = \pm 12 V$ -9 $R_L = 3 k\Omega$ $V_{CC\pm}$ = ± 5 V -12T_A = 25°C 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 V_I - Input Voltage - V

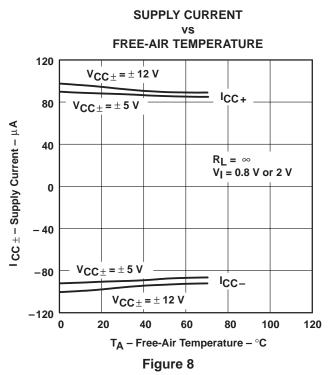
Figure 2

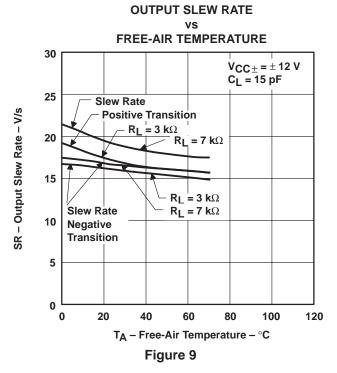
SHORT-CIRCUIT OUTPUT CURRENT FREE-AIR TEMPERATURE 15 $V_{CC\pm} = \pm 12 V$ IOS - Short-Circuit Output Current - mA 10 I_{OS(L)} V_I = 2 V 5 $V_O = 0$ or V_{CC+} 0 -5 $I_{OS(H)}$ $V_{I} = 0.8 V$ $V_O = 0$ or V_{CC} -10-1520 60 80 100 120 T_A - Free-Air Temperature - °C

Figure 4

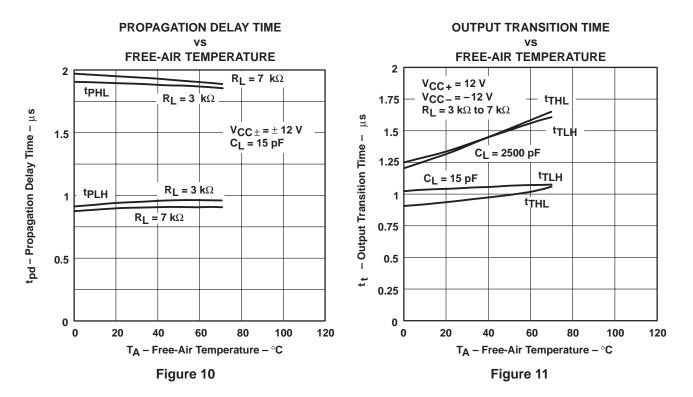





Figure 3




POWER-OFF OUTPUT RESISTANCE

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

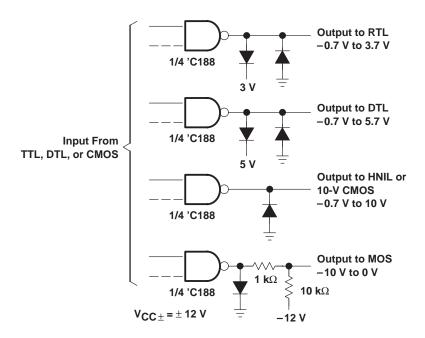
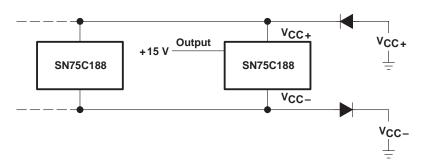



Figure 12. Logic Translator Applications

APPLICATION INFORMATION

NOTE A: External diodes placed in series with the V_{CC-} and V_{CC-} leads protect the SN75C188 in the fault condition where the device outputs are shorted to \pm 15 V and the power supplies are at low voltage and provide low-impedance paths to GND.

Figure 13. Power Supply Protection to Meet Power-Off Fault Conditions of Standard EIA/TIA-232-E

PACKAGE OPTION ADDENDUM

24-Aug-2018

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN75C188D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C188	Samples
SN75C188DBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	CA188	Samples
SN75C188DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C188	Samples
SN75C188DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75C188	Samples
SN75C188N	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75C188N	Samples
SN75C188NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75C188	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

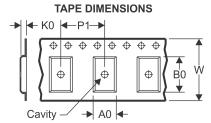
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

24-Aug-2018

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

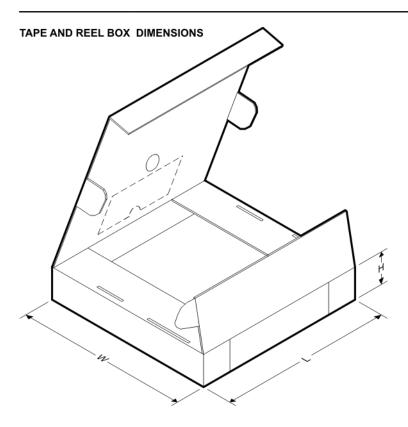

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Dec-2018

TAPE AND REEL INFORMATION

A0	<u> </u>
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75C188DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN75C188DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN75C188NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 20-Dec-2018

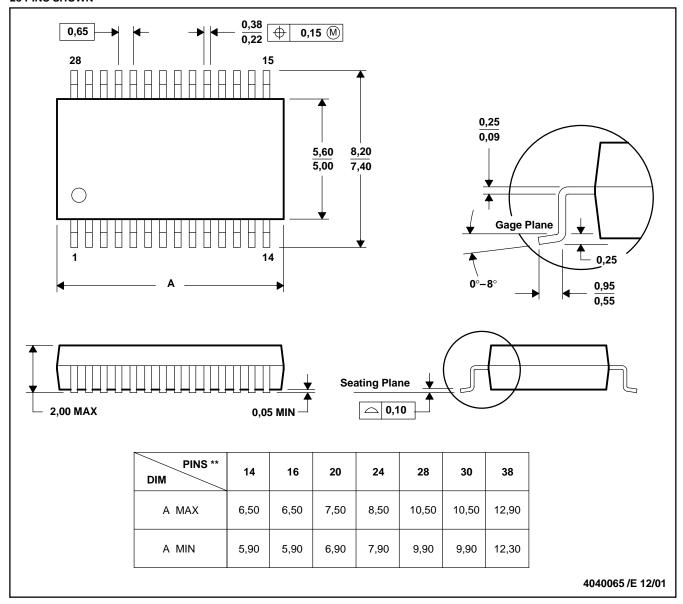
*All dimensions are nominal

			_				
Device	Package Type Package Drawing		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75C188DR	SOIC	D	14	2500	333.2	345.9	28.6
SN75C188DR	SOIC	D	14	2500	367.0	367.0	38.0
SN75C188NSR	SO	NS	14	2000	367.0	367.0	38.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DB (R-PDSO-G**)

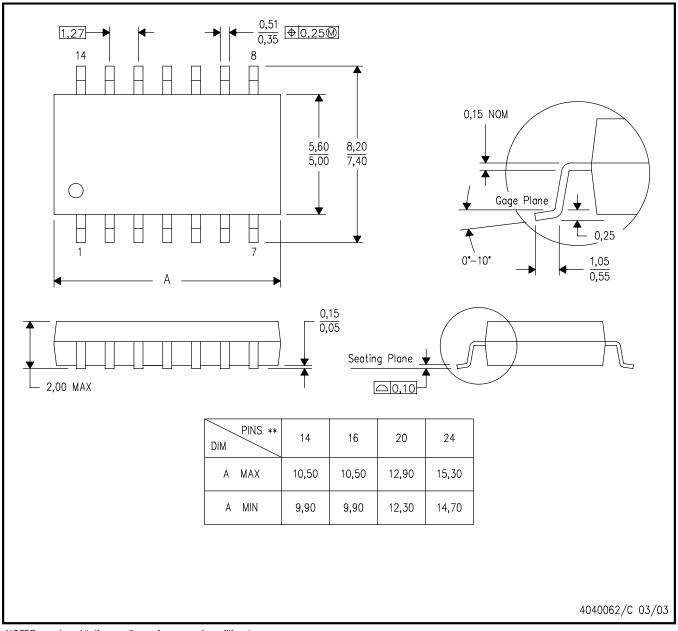
PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

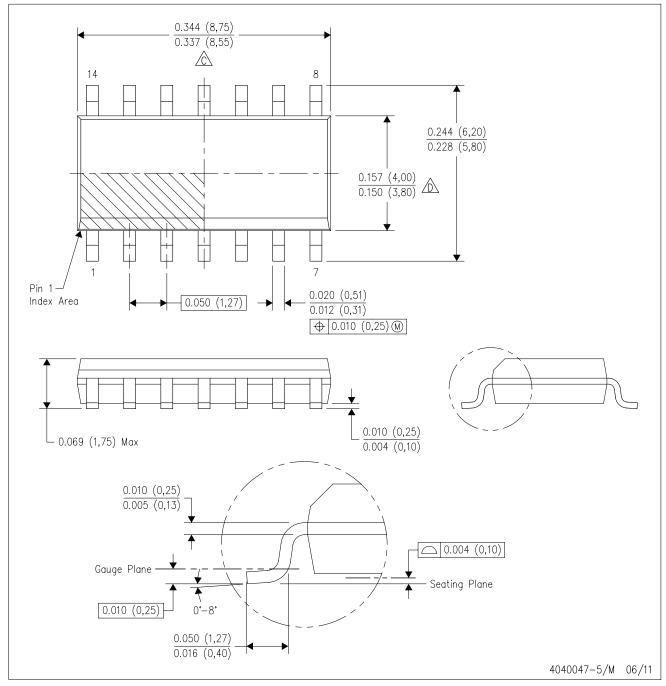

D. Falls within JEDEC MO-150

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

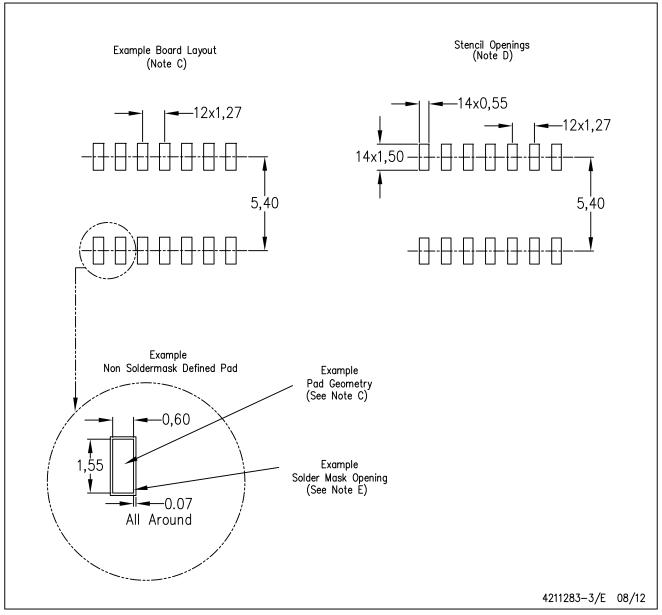
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated